

Australian Government

Australian Centre for International Agricultural Research

SUSTAINABLE INTENSIFICATION OF MAIZE-LEGUME SYSTEMS FOR FOOD SECURITY IN EASTERN AND SOUTHERN AFRICA (SIMLESA)

LESSONS AND WAY FORWARD

ACIAR MONOGRAPH 211

SUSTAINABLE INTENSIFICATION OF MAIZE-LEGUME SYSTEMS FOR FOOD SECURITY IN EASTERN AND SOUTHERN AFRICA (SIMLESA)

LESSONS AND WAY FORWARD

EDITORS ERIN WILKUS, MULUGETTA MEKURIA, DANIEL RODRIGUEZ AND JOHN DIXON

2021

The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development assistance program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and international researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres.

The Chief Executive Officer of ACIAR reports directly to the Australian Government Minister for Foreign Affairs. ACIAR operates solely on budget appropriation from Australia's Official Development Assistance (ODA).

Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR.

ACIAR MONOGRAPH SERIES

This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR research and development objectives. Publications in the series are available as hard copy, in limited numbers, and online from the ACIAR website at **aciar.gov.au**

© Australian Centre for International Agricultural Research (ACIAR) 2021

This work is copyright. Apart from any use as permitted under the *Copyright Act 1968*, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, aciar@aciar.gov.au

Wilkus, E, Mekuria, M, Rodriguez, D & Dixon, J 2021, Sustainable intensification of maize-legume systems for food security in eastern and southern Africa (SIMLESA): Lessons and way forward, ACIAR Monograph No. 211, Australian Centre for International Agricultural Research, Canberra. 503 pp.

ACIAR Monograph No. 211 ISSN 1031-8194 (print) ISSN 1447-090X (online) ISBN 978-1-922345-75-2 (print) ISBN 978-1-922345-76-9 (PDF)

Technical editing by Lorna Hendry Design by WhiteFox Printing by CanPrint Communications Proofreading by Joely Taylor

Cover: Maria Gorete (far right), farmer and SIMLESA project participant, plants maize with her daughters in Angonia, Mozambique. At the end of 2017, more than 230,000 farmers had adopted sustainable intensification technologies. Photo: © CIMMYT. Photo by Peter Lowe.

Foreword

More than 1.3 billion people live in Africa, a number expected to almost double to 2.5 billion by 2050. Food insecurity and resource degradation in a changing climate are pressing concerns with geopolitical significance. For decades, agricultural researchers have been alarmed by the wide gap between the yields that are technically possible on African research stations, and those that are typically achieved in African farmers' fields. Leading researchers from Africa and internationally (including Australia) have long understood that it is insufficient to just focus on single interventions in one part of the system (e.g. better seed varieties, or improving fertiliser application). Durable, meaningful improvements can only be effected by understanding the whole farming system, including the policy and market contexts within which farmers operate.

For almost a decade, the Australian Centre for International Agricultural Research (ACIAR) brokered and invested in an ambitious, multidisciplinary applied research program in eastern and southern Africa to identify the pathways to sustainable intensification of diverse maize–legume farming systems.

The program, called the *Sustainable intensification of maize-legume cropping systems for food security in eastern and southern Africa*, and known as SIMLESA, typifies the work of ACIAR. ACIAR is mandated by the *Australian Centre for International Agricultural Research Act 1982* to work with partners across the Indo-Pacific region to generate knowledge and technologies to underpin improvements in agricultural productivity, sustainability and food system resilience. We do this by funding, brokering and managing research partnerships for the benefit of partner countries and Australia.

SIMLESA is one of the largest research partnerships ever funded by ACIAR. From 2010 to 2019, the program harnessed the energy and talent of researchers from eight countries in eastern and southern Africa, Australian Universities notably the University of Queensland in Australia and three international research centres belonging to the CGIAR system, all led by the International Maize and Wheat Improvement Center (CIMMYT).

SIMLESA is a flagship program that demonstrated to stakeholders at all levels, from farmers to business people, policymakers and ministers, the promise and opportunity of conservation agriculture-based sustainable intensification (CASI). It showed that holistic farming systems intensification; integrated combinations of reduced tillage, modern maize and legume varieties; retention of crop residue for preserving soil cover; and moderate doses of organic and inorganic fertiliser can deliver benefits to farmers and their environment. SIMLESA conducted a nuanced, rich and contextualised analysis of the benefits and trade-offs of the proposed innovations, which, overall, lifted production, reduced costs and helped farmers to better manage risk.

Constraints and obstacles to adoption of the innovations by farmers were studied and collective mechanisms to overcome these were tested. SIMLESA fostered many innovation platforms—multi-stakeholder, grassroots institutions that allow farmers, their suppliers and their customers to interact and collectively improve farming and food systems. Agriculture ministers from the eight partner countries strongly endorsed the CASI pathway in Uganda in May 2019. This reflects a key policy achievement of SIMLESA, paving the way to country-led expansion of SIMLESA practices and innovations in eastern Africa.

This majestic monograph, *SIMLESA: Lessons and way forward*, is a comprehensive, authoritative synthesis of selected results and lessons from this 10-year partnership, reflecting the hard work and hard-won lessons learned by more than 60 African and 15 international and Australian scientists.

Thank you and congratulations to the editors and authors of the 26 chapters of this book and the many more scientific articles that have been produced to document the SIMLESA project. This timely book should be useful to practitioners of CASI in eastern and southern Africa (and well beyond) for many years to come.

Bonglell

Andrew Campbell Chief Executive Officer, ACIAR

Contents

Lis	t of figures	vii
Lis	t of tables	xi
Ac	knowledgments	xvi
Lis	t of authors	xvii
Acı	ronyms and abbreviations	xxii
Int	roduction	xxv
SEG	CTION 1 SETTING THE SCENE: THE MOTIVATION FOR SIMLESA	
1	A program to design productive, resilient and sustainable agricultural systems	2
2	Sustainable intensification as a driver of agricultural and rural transformation	15
3	Sustainable intensification in the face of socioeconomic, policy and agroecological diversity	34
4	Farming under variable and uncertain climates	43
5	Agriculture innovation under multiple constraints: the value of transdisciplinary approaches	59
SEG	CTION 2 REGIONAL FRAMEWORK AND HIGHLIGHTS	
6	Conservation agriculture as a determinant of sustainable intensification	74
7	Knowledge generation and communication for climate-informed management practice	91
8	Adoption and benefits of sustainable intensification technologies across household gender roles and generations	109
9	Maize and legume seed system improvement	129
10	Options to improve availability, nutritive value and utilisation of crop residue feedstuffs for ruminants	151
11	Market and value-chain development for sustainable intensification in eastern and southern Africa	175

SEC	CTION 3 HIGHLIGHTS FROM COUNTRY INITIATIVES	
13	A systems research approach to the sustainable intensification of agriculture in Australia's northern grains region	212
14	Achievements and prospects of CASI practices among smallholder maize–legume farmers in Ethiopia	227
15	Intensification of maize and legumes in Kenya	263
16	Sustainable intensification of maize and legume farming systems in Tanzania	289
17	Identifying and out-scaling suitable CASI practices for cropping systems in Malawi	310
18	The sustainable intensification of agriculture in Mozambique	333
19	Promoting conservation farming for the sustainable intensification of maize-legume cropping systems in Uganda	350
20	CASI: a vital component of integrated soil fertility management in Rwanda	374
21	Lessons learned from country innovations	390
SE(

SECTION 4 INSTITUTIONS AND SCALING

402
422
438
446

SECTION 5 BUILDING ON SIMLESA

	• • • • • • • • • • • • • • • •
26 SIMLESA: Outputs, outcomes, impacts and way forward	462
•••••••••••••••••••••••••••••••••••••••	

Appendix	473
	•••••

List of figures

Figure 1.1	Hunger in eastern and southern Africa	3
Figure 1.2	Principal farming systems of Africa	5
Figure 2.1	Prevalence of sustainable intensification application areas	22
Figure 2.2	Major farming systems of Africa, 2015	28
Figure 4.1	Venn diagram of climate-informed sustainable intensification practices	53
Figure 5.1	SIMLESA and the innovation gap	65
Figure 5.2	SIMLESA transdisciplinary architecture	67
Figure 6.1	Five SIMLESA countries, location of experimental sites and average annual precipitation (2010–17)	77
Figure 6.2	Soil organic carbon under CASI across cropping systems over time in Salima, Malawi and Kasungu, Malawi	78
Figure 6.3	Mean time to pond water infiltration assessments in the lowland communities of Balaka, Ntcheu and Salima (Malawi) in 2013	79
Figure 6.4	Soil water content, soil organic carbon and soil bulk density with conventional practices and CASI practices at Bako and Melkassa in Ethiopia	80
Figure 6.5	Gross margin analysis of CASI practices in Malawi	83
Figure 6.6	Mean maize yields from Kasungu district, Malawi, over six seasons (2010–11 to 2015–16)	85
Figure 7.1	Research and development pipeline for climate-informed decision-making in agriculture	92
Figure 7.2	Farmers' decision-making process	102
Figure 8.1	Gender-disaggregated data of SIMLESA technology adopters in 2012–13 by country	115
Figure 8.2	Gender-disaggregated data of SIMLESA technology adopters in 2016–17 by country	115
Figure 9.1	A heuristic model of the formal and informal seed systems	139
Figure 9.2	A heuristic model of the formal, informal and intermediate seed systems and main components of participatory varietal selection trials in Uganda	141
Figure 9.3	Systematic diagram of a seed road map	144
Figure 10.1	Relationship between stover dry matter digestibility and grain yield in maize genotypes	158
Figure 10.2	Relationship between stover nitrogen concentrations and grain yield in maize genotypes	158
Figure 10.3	Relationships between seed yield and haulm plus pod wall yield and dry matter digestibility in common bean varieties at four sites	166

Figure 11.1	Use of a combination of CASI practices, Ethiopia and Kenya, 2010	179
Figure 12.1	Linkages and actors in an innovation platform	197
Figure 12.2	SIMLESA pamphlets	207
Figure 13.1	Drivers of and constraints to farmer-led diversification of rainfed cropping systems in Australia's northern grain region	215
Figure 13.2	Yield of sorghum and maize hybrids across management combinations versus the average site yield and total available water, Australia, 2014–16	216
Figure 13.3	Rules of thumb to identify high-yielding crop designs for sorghum production in high- and low-yielding environments	218
Figure 13.4	Rules of thumb to identify high-yielding crop designs for maize production in high- and low-yielding environments	219
Figure 13.5	Use of nitrogen fertilisers and total variable costs for farms with above- and below-mean debt.	222
Figure 13.6	Classification tree for the effects of farm debt on sorghum yields and gross margins	223
Figure 13.7	Likelihood of achieving yields lower than 1.5 t/ha, above-median yields and yields in the upper tercile	223
Figure 14.1	Long-term average maize production in Ethiopia	229
Figure 14.2	Ethiopian common bean export volume, value and price per tonne, 2006–15	230
Figure 14.3	Impact of agronomic practices on maize variety performance and net maize income in Ethiopia	238
Figure 14.4	Farmers' preferences for CASI maize–legume production practices, Bako, 2013	239
Figure 14.5	Daily rainfall and thermal degree days during the common bean–maize cropping systems, 2010–13	245
Figure 14.6	Chemical properties of soil influenced by different cropping systems with tillage practices	249
Figure 14.7	Comparison of maize hybrids for their suitability in north-western Ethiopia	251
Figure 14.8	Maize-growing mega-environments constructed using genotype plus genotype-by-environment biplot	252
Figure 14.9	Seed yield of sweet lupine varieties evaluated across Ethiopia	254
Figure 14.10	Major districts of the SIMLESA program implementation areas in Ethiopia	257
Figure 15.1	SIMLESA trial sites in western and eastern Kenya	269
Figure 15.2	Heat map of the characteristics and livelihood strategies of farmer groups from western and eastern Kenya	275
Figure 15.3	Average annual maize grain yield under different tillage practices in eastern Kenya SIMLESA sites, 2010–16	279
Figure 15.4	Average annual bean yield under different tillage practices in eastern Kenya SIMLESA sites, 2010–16	279

Figure 15.5	Labour costs of different tillage practices in eastern Kenya	280
Figure 15.6	Effect of tillage practices on crop water use efficiency in eastern Kenya	281
Figure 15.7	Effect of tillage practice on soil bulk density in eastern Kenya, 2010 and 2016	281
Figure 16.1	Farmers' sources of information about CASI practices	297
Figure 16.2	Average pigeonpea yield for four seasons for low- and high-potential environments in northern Tanzania	298
Figure 16.3	Average maize yield for four seasons for low- and high-potential environments in northern Tanzania	298
Figure 16.4	Alternating rows of maize (matured and dried) and pigeonpea	299
Figure 16.5	Response of different practices in varied seasons, 2010–13	302
Figure 16.6	Average soil moisture level at different stage of plant development at Selian Agricultural Research Station	303
Figure 16.7	Average monthly rainfall at Selian Agricultural Research Station	303
Figure 16.8	Yield of maize varieties, Mbulu	305
Figure 16.9	Yield of maize varieties, Karatu	305
Figure 17.1	Maize production and national food requirement	312
Figure 17.2	Average rainfall and temperature, 1990–2015	313
Figure 17.3	Technology use in Malawi, 2010	314
Figure 17.4	SIMLESA districts and agroecological zones based on elevation	316
Figure 17.5	Technology adoption, 2013	323
Figure 17.6	Technology adoption by total sample and gender of household head, 2015	323
Figure 17.7	Reasons for disadoption of technologies, 2013	324
Figure 17.8	Disadoption of technologies by overall main reason and ranked reasons, 2015	324
Figure 17.9	Average change in maize yield (2010–13)	325
Figure 17.10	Cumulative run-off at different rates of nitrogen and crop residues	326
Figure 17.11	Extractable soil water at different rates of nitrogen and crop residues	327
Figure 17.12	Ketelina Adoni and her husband standing in front of their home, 2012	328
Figure 18.1	Location of SIMLESA communities in central Mozambique	334
Figure 18.2	On-farm maize yield distributions in Tete and Manica provinces	339
Figure 19.1	Bare land patches interspersed with shrubs in Nakasongola district	353
Figure 19.2	Hand hoeing in Uganda	353
Figure 19.3	Uganda SIMLESA program sites	356
Figure 19.4	Maize-bean intercropping patterns	358

Figure 19.5	Spatial distribution of bare grounds in Nakasongola and surrounding areas	362
Figure 19.6	Above-ground dry matter yield of pigeonpea elite varieties compared to natural fallow	363
Figure 20.1	Maize yield (cobs) in Kamonyi, Runda, 2017	377
Figure 20.2	Bean yield in Kamonyi, Runda, 2017	377
Figure 20.3	Maize yield (cobs) in Bugesera, Gashora, 2017	378
Figure 20.4	Bean yield in Bugesera, Gashora, 2016 and 2017	379
Figure 20.5	Maize yield (cobs) in Musanze, Cyuve, 2017	379
Figure 20.6	Bean yield in Musanze, Cyuve, 2016 and 2017	380
Figure 20.7	Field under CASI after bean harvest at Cyuve	381
Figure 20.8	Climbing beans grown under CASI and tillage agriculture plots, Cyuve, 2017	383
Figure 20.9	Bush bean grown under CASI after a season of maize, Runda, 2017	383
Figure 20.10	Agroforestry as a source of mulch for CASI systems	385
Figure 20.11	Effect of CASI on soil drainage, water infiltration and plant vigour	386
Figure 20.12	Chickens in maize plots, Runda and Cyuve	387
Figure 20.13	Maize growth under CASI at Runda	387
Figure 20.14	Damage to maize from fall armyworms	388
Figure 21.1	Stepwise SIMLESA activities to promote CASI technologies	392
Figure 22.1	Policy interventions needed to spur wide adoption of sustainable intensification	407
Figure 23.1	Three related pathways to sustainable intensification	424
Figure 23.2	Impacts of sustainable intensification practices on nutrition	425
Figure 24.1	Delivery of information to farmers and agribusinesses by mobile phone	440
Figure 24.2	Main sources of information among participating farmers	443
Figure 25.1	Components of SIMLESA scaling science	448
Figure 25.2	Research and development is a relay	453
Figure 25.3	Factors of agricultural innovation platform maturation and their ingredients of growth	455
Figure 25.4	Summary of SIMLESA scaling	457
Figure 26.1	Key CASI focus areas	471

List of tables

Phase 1 and Phase 2 objectives under SIMLESA	10
Drought exposure and risk among SIMLESA households	46
Major types of climate forecasts	48
Decision-making approaches and climate and weather-related data	49
Major agroecologies and a summary of CASI systems	76
Effects of CASI systems on soil erosion at Bako Agricultural Research Center	80
Macrofauna and mesofauna diversity across long-term and short-term trials in Nyabeda and Kakamega, Kenya	81
Macrofauna and mesofauna abundance across long-term and short-term trials in Nyabeda and Kakamega, Kenya	82
Effects of treatments on different phyla at the SIMLESA trials in western Kenya	82
Comparison of CASI and conventional maize grain yields across ESA	84
Gender-disaggregated data of SIMLESA technology adopters by country	114
Gender-disaggregated plot level technology adoption	116
Membership composition of successful innovation platforms in SIMLESA countries	120
Area and production of maize and legumes in SIMLESA countries, 2012–14	132
Farmers' selection criteria for various crops on-farm	134
Identified and released maize varieties under the SIMLESA program for the various agroecologies	135
Legumes varieties demonstrated and promoted under SIMLESA	137
Seed companies involved in scaling SIMLESA products in ESA	145
Yield of grain and stover dry matter with three genotypes of medium-maturing maize varieties	157
Yields of grain and stover dry matter at two planting densities	160
Yields of maize grain and maize stover harvested to provide top and bottom stover, by site and genotype	162
Yields of maize grain and maize stover harvested to provide top and bottom stover, by fraction	163
Seed yield, haulm plus pod wall yield, pod wall proportion, dry matter digestibility and nitrogen, by site	165
Frequency of sample households using different CASI practices in maize production, Ethiopia and Kenya, 2010	179
	Drought exposure and risk among SIMLESA households Major types of climate forecasts Decision-making approaches and climate and weather-related data Major agroecologies and a summary of CASI systems Effects of CASI systems on soil erosion at Bako Agricultural Research Center Macrofauna and mesofauna diversity across long-term and short-term trials in Nyabeda and Kakamega, Kenya Macrofauna and mesofauna abundance across long-term and short-term trials in Nyabeda and Kakamega, Kenya Effects of treatments on different phyla at the SIMLESA trials in western Kenya Comparison of CASI and conventional maize grain yields across ESA Gender-disaggregated data of SIMLESA technology adopters by country Gender-disaggregated plot level technology adoption Membership composition of successful innovation platforms in SIMLESA countries Area and production of maize and legumes in SIMLESA countries, 2012-14 Farmers' selection criteria for various crops on-farm Identified and released maize varieties under the SIMLESA program for the various agroecologies Legumes varieties demonstrated and promoted under SIMLESA Seed companies involved in scaling SIMLESA products in ESA Yield of grain and stover dry matter at two planting densities Yields of maize grain and maize stover harvested to provide top and bottom stover, by site and genotype Yields of maize grain and maize stover harvested to provide top and bottom stover, by fraction Seed yield, haulm plus pod wall yield, pod wall proportion, dry matter digestibility and nitrogen, by site Frequency of sample households using different CASI practices in maize

Table 11.2	Physical distance from farms to main input sources, Ethiopia and Kenya, 2010	180
Table 11.3	Use of improved seed and inorganic fertiliser by distance to cooperative union, Ethiopia, 2010	180
Table 11.4	Farmers who needed and accessed credit, Ethiopia and Kenya, 2010	181
Table 11.5	Farmer participation in maize and legume markets, Ethiopia and Kenya, 2010	182
Table 11.6	Maize and legume value-chain actors at different outlets, Ethiopia and Kenya, 2010	182
Table 11.7	Multivariate Probit model of adoption of CASI practices in Ethiopia	184
Table 11.8	Multivariate Probit model of adoption of CASI practices in Kenya	185
Table 12.1	SIMLESA-funded masters and doctoral students at South African universities	191
Table 12.2	Academic support of NARS personnel in SIMLESA countries	191
Table 12.3	SIMLESA short-term training programs	192
Table 12.4	Technical modules on cropping systems management and intended outcomes	194
Table 12.5	Proposed process to guide formation of an innovation platform	199
Table 12.6	SIMLESA innovation platforms by country	199
Table 12.7	Competitive grants scheme partners	200
Table 12.8	Biometry training and support	202
Table 12.9	SIMLESA pamphlets	208
Table 13.1	Mean profits from farmers' current practice and crop designs	221
Table 14.1	Research centres implementing CASI practices under the SIMLESA program in Ethiopia, 2010–17	233
Table 14.2	Number of households, production areas of cereals, pulses and common bean in SIMLESA program areas, Ethiopia, 2016	235
Table 14.3	Conventional practices versus CASI maize and legume production across major agroecologies in Ethiopia	237
Table 14.4	Farmers' awareness and use of CASI practices, Bako, 2013	239
Table 14.5	Adoption of maize and common bean varieties by different categories of CASI farmers, Central Rift Valley, 2013	240
Table 14.6	Awareness of CASI practices by different categories of farmers in the Central Rift Valley in 2013	241
Table 14.7	Effect of different tillage and management practices on soil loss at BARC	243
Table 14.8	Ecosystem benefits of practices of CASI and conventional practices at BARC	244
Table 14.9	Effect of planting arrangements on grain yield and land equivalent ratio of maize-common bean/lupine intercropping in north-western Ethiopia	246

Table 14.10	Grain yield and biomass of maize and first belg common beans in permanent long-term SIMLESA plots in Loka Abaya and Boricha districts, 2015	247
Table 14.11	Soil macrofauna under CASI and conventional practices in southern Ethiopia, 2015	248
Table 14.12	Farmers' selection criteria for maize varieties, southern Ethiopia, 2013	250
Table 14.13	Days to maturity and yield of maize hybrids, Ethiopia, 2012–13	251
Table 14.14	Farmer evaluation criteria and ranking of nine common bean varieties, southern Ethiopia	253
Table 14.15	Traits of Sanabor and Vitabor sweet lupine varieties	255
Table 14.16	Mean grain yield of 12 white lupin landraces tested across six locations in Ethiopia	255
Table 14.17	Access to resources and decision-making in Central Rift Valley in Ethiopia	258
Table 15.1	Tillage methods selected by farmers for testing	271
Table 15.2	Household characteristics in Kenya	274
Table 15.3	Maize varieties selected and endorsed by farmers	276
Table 15.4	Legume varieties endorsed by farmers	277
Table 15.5	Fodder varieties endorsed by farmers	278
Table 15.6	Scaling out of SIMLESA technologies and activities	283
Table 15.7	Seed road maps showing the type and amount of seed produced	284
Table 15.8	Key seed companies and partners	284
Table 15.9	Targets to be reached by partners in the competitive grant system	285
Table 15.9 Table 16.1	Targets to be reached by partners in the competitive grant system Course and number of trainees by gender	285 293
•••••		
Table 16.1	Course and number of trainees by gender	293
Table 16.1 Table 16.2	Course and number of trainees by gender Household demographics	293 295
Table 16.1 Table 16.2 Table 16.3	Course and number of trainees by gender Household demographics Land ownership at district level	293 295 295
Table 16.1 Table 16.2 Table 16.3 Table 16.4	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level	293 295 295 296
Table 16.1 Table 16.2 Table 16.3 Table 16.4 Table 16.5	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level Adoption of at least one CASI practice, by gender	293 295 295 296 296
Table 16.1 Table 16.2 Table 16.3 Table 16.4 Table 16.5 Table 16.6	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level Adoption of at least one CASI practice, by gender Adopters of CASI practices, 2015–16	293 295 295 296 296 297
Table 16.1 Table 16.2 Table 16.3 Table 16.4 Table 16.5 Table 16.6 Table 16.7	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level Adoption of at least one CASI practice, by gender Adopters of CASI practices, 2015–16 Average time spent in different activities for different practices Average farm partial budget for different practices for different	293 295 295 296 296 297 300
Table 16.1 Table 16.2 Table 16.3 Table 16.4 Table 16.5 Table 16.6 Table 16.7 Table 16.8	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level Adoption of at least one CASI practice, by gender Adopters of CASI practices, 2015–16 Average time spent in different activities for different practices Average farm partial budget for different practices for different communities in Tanzania	293 295 295 296 296 297 300 300
Table 16.1 Table 16.2 Table 16.3 Table 16.4 Table 16.5 Table 16.6 Table 16.7 Table 16.8 Table 16.9	Course and number of trainees by gender Household demographics Land ownership at district level Adoption of CASI practices at household level Adoption of at least one CASI practice, by gender Adopters of CASI practices, 2015-16 Average time spent in different activities for different practices Average farm partial budget for different practices for different communities in Tanzania Soil dynamics analysis of four communities hosting exploratory trials for four seasons Mean grain yield for maize in CASI and conventional practice, Selian	293 295 295 296 296 297 300 300 301

Table 16.12	Effect of CASI and conventional practice tillage systems on growth parameters of pigeonpea, Llonga, 2016	304
Table 16.13	Maize grain yield mean performance, Kilosa	306
Table 16.14	Production amount of pigeonpea breeders' seeds, 2011–14	306
Table 16.15	Production of maize breeders' seeds and certified seeds for Selian H208	306
Table 17.1	Treatments for on-farm trials in different agroecologies of Malawi	317
Table 17.2	Initial chemical soil characterisation of trial sites, 2010–11	318
Table 17.3	Average maize yields by cropping system in low-altitude districts, 2010-14	319
Table 17.4	Average maize yields by cropping system in mid-altitude districts, 2010–14	320
Table 17.5	Technologies preferred by farmers in SIMLESA districts	321
Table 17.6	Scalable technologies	322
Table 18.1	Comparison of yields in CASI to conventional maize production and the number of households impacted, Mozambique	336
Table 18.2	Sussundenga and Gorongosa yield increase in six years of CASI practices	336
Table 18.3	Maize yields across CASI practices for two communities in Angonia, Mozambique	337
Table 18.4	Number of trials conducted under the mother–baby trial design, 2012–14	338
Table 18.5	Number of participatory selection trials conducted for legume varieties, 2012–14	338
Table 18.6	Soil carbon and nitrogen changes, Chimoio, Mozambique	342
Table 19.1	Challenges faced by farmers along the maize–legume commodity value chains, Nakasongola and Lira	360
Table 19.2	Spatial distribution of different land cover classes in Nakasongola	362
Table 19.3	Maize–bean intercropping patterns, their attributes, grain yield and accruing revenue	364
Table 19.4	Maize seeding rates and grain yield, Ngetta ZARDI and NARL–Kawanda, average of two seasons, 2013	365
Table 19.5	Bean seeding rates and grain yield, NARL–Kawanda and Ngetta ZARDI, average of two seasons, 2013	366
Table 19.6	Effect of varying maize and bean seeding rates using rip lines on maize and bean grain yield at Ngetta ZARDI, average of two seasons, 2013	366
Table 19.7	Average bean and maize grain yields as a response to different tillage practices	367
Table 19.8	Benefits from the Uganda SIMLESA program interventions along the commodity value chains	368
Table 20.1	Characteristics of SIMLESA intervention sites	375
Table 20.2	Split-plot experimental design	376

Table 21.1	Participating countries and institutions	391
Table 21.2	Agricultural innovation platforms established under SIMLESA	394
Table 21.3	Selected partners in each country	398
Table 23.1	The main location of maize traders' operations and sales	427
Table 23.2	Prevalence of contracts in purchase or sale transactions by traders	427
Table 23.3	Policy simulation variables	430
Table 23.4	Extension simulations: predicted probability of CASI adoption by sample	431
Table 23.5	Subsidy simulations: predicted probability of CASI adoption by sample	433
Table 23.6	Fertiliser–maize price ratio simulations: predicted probability of CASI adoption by sample	434
Table 24.1	Type of information required by users	441
Table 24.2	Stakeholder engagement	442
Table 25.1	Partner estimates of reach vs application	449
Table 25.2	Criteria and indicators for quantitative expansion	450
Table 25.3	Summary of SIMLESA competitive grant scheme guiding principles	452
Table 25.4	Merits and demerits of SIMLESA competitive grant scheme	453
Table 25.5	Number of agricultural innovation platforms established under SIMLESA	454
Table 26.1	Selected SIMLESA output clusters, likely outcomes and probable impacts by theme	469

Acknowledgments

The SIMLESA effort was inspired by and dependent on the individual farmers and families from eastern and southern Africa who participated. They grounded the research and provided the motivation to make a real impact. The diverse team of SIMLESA researchers and scholars provided insight from a broad array of development histories and social and agroecological processes to relate the experiences of farmers and practitioners to broader trends and alternative perspectives. The effective collaboration by African agricultural research organisations, CIMMYT, ICRISAT, ILRI, Australian universities and ACIAR generated the directions and the enthusiasm to carry out the program and realise the SIMLESA vision. Individuals, including Dr Mulugetta Mekuria from CIMMYT and Dr John Dixon from ACIAR, were pivotal to establishing partnerships.

The research and coordination organisations included:

- Ethiopian Institute of Agricultural Research (Ethiopia)
- Kenya Agricultural and Livestock Research Organization (Kenya)
- Ministry of Agriculture (Tanzania)
- Ministry of Agriculture, Irrigation and Water Development (Malawi)
- Instituto de Investigação Agrária de Moçambique (Mozambique)
- Agricultural Research Council (South Africa)
- Association for Strengthening Agricultural Research in Eastern and Central Africa (Uganda)
- International Crops Research Institute for the Semiarid Tropics (India)
- International Livestock Research Institute (Kenya)
- International Maize and Wheat Improvement Center (Mexico)
- Murdoch University (Australia)
- The University of Queensland (Australia)
- Australian Centre for International Agricultural Research (Australia)

List of authors

Rahma Isaack Adam	International Maize and Wheat Improvement Center (CIMMYT) Nairobi, Kenya
Tadesse Birhanu Atomsa	Oromia Agricultural Research Institute (OARI) West Shewa, Ethiopia
George Ayaga	Kenya Agricultural and Livestock Research Organization (KALRO) Busia, Kenya
Adam Bekele	Ethiopian Institute of Agricultural Research (EIAR) Addis Ababa, Ethiopia
Bedru Beshir	Ethiopian Institute of Agricultural Research (EIAR) Addis Ababa, Ethiopia
Gérard Bruno	International Maize and Wheat Improvement Center (CIMMYT) Texcoco, Mexico
Petronella Chaminuka	Agricultural Research Council (ARC) Pretoria, South Africa
Kenneth Chaula	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Justus Chintu	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Eric Craswell	Fenner School of Environment and Society Australian National University Canberra, Australia
Peter Craufurd	International Maize and Wheat Improvement Center (CIMMYT) Kathmandu, Nepal
Geckem Dambo	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Annelie De Beer	Agricultural Research Council (ARC) Pretoria, South Africa
Mesfin Dejene	Ethiopian Institute of Agricultural Research Addis Ababa, Ethiopia
Domingos Dias	Instituto de Investigação Agrária de Moçambique (IIAM) Chimoio, Mozambique
John Dixon	The University of Queensland Brisbane, Australia
Rob Dixon	Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Rockhampton, Australia
Sebastian Gavera	International Maize and Wheat Improvement Center (CIMMYT) Harare, Zimbabwe
Patrick Gicheru	Kenya Agricultural Research Institute (KALRO) Embu, Kenya

Legesse Hidoto	Southern Agricultural Research Institute (SARI)
-	Hawassa, Ethiopia
Moti Jaleta	International Maize and Wheat Improvement Center (CIMMYT) Addis Ababa, Ethiopia
Rosalyne Juma	Kenya Agricultural and Livestock Research Organization (KALRO) Kakamega, Kenya
Michel Kabiligi	Rwanda Agriculture and Animal Resources Board (RAB) Rubilizi, Kigali-Rwanda
Donwell Kamalongo	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Florence Kamwana	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Fred Kanampiu	International Institute of Tropical Agriculture (IITA) Nairobi, Kenya
Joselyn Kashagama	National Agricultural Research Organization (NARO) Kampala, Uganda
Samson P Katengeza	Lilongwe University of Agriculture and Natural Resources (LUANAR) Lilongwe, Malawi
Job Kihara	Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) Nairobi, Kenya
Miriam Kyotalimye	Unaffiliated, independent consultant Kampala, Uganda
Feyera Merga Liben	Ethiopian Institute of Agricultural Research (EIAR) Addis Ababa, Ethiopia
James Lwasa	National Agricultural Research Organization (NARO) Kampala, Uganda
Ramsey Magambo	Sasakawa Global 2000 Uganda (SG2000 Uganda) Kampala, Uganda
Felister Wambugha Makini	Kenya Agricultural and Livestock Research Organization (KALRO) Nairobi, Kenya
Bashir Makoko	llonga Agricultural Research Institute (ARI-Ilonga) Kilosa, Morogoro, Tanzania
Lameck Makoye	Selian Agricultural Research Institute (SARI) Arusha, Tanzania
Ângela Manjichi	Department of Community Sustainability Michigan State University Lansing, United States
Paswel Marenya	International Maize and Wheat Improvement Center (CIMMYT) Addis Ababa, Ethiopia
Gift Mashango	International Maize and Wheat Improvement Center (CIMMYT) Harare, Zimbabwe
George Mburathi	Australian Centre for International Agricultural Research (ACIAR) Kenya
Mulugetta Mekuria	International Maize and Wheat Improvement Centre (CIMMYT) Harare, Zimbabwe

Truayinet Mekuriaw	Ethiopian Institute of Agricultural Research (EIAR) Addis Ababa, Ethiopia
Alfred Micheni	Kenya Agricultural Research Institute (KALRO) Embu, Kenya
Michael Misiko	Africa Rice Center Cotonou, Benin
Frank Mmbando	Selian Agricultural Research Institute (SARI) Arusha, Tanzania
Drake N Mubiru	National Agricultural Research Organization (NARO) Kampala, Uganda
Zahara Mukakalisa	Rwanda Agriculture and Animal Resources Board Rubilizi, Kigali-Rwanda
Grace T Munthali	Ministry of Agriculture Irrigation and Water Development Lilongwe, Malawi
Timanyechi Munthali	Department of Agricultural Research Services University of Pretoria Pretoria, South Africa
Walter Mupangwa	International Livestock Research Institute (ILRI) Addis Ababa, Ethiopia
Catherine Muriithi	Kenya Agricultural Research Institute (KALRO) Embu, Kenya
Rehima Mussema	Ethiopian Institute of Agricultural Research (EIAR) Addis Ababa, Ethiopia
Cyprian Mwale	Ministry of Agriculture, Department of Agricultural Research Services Lilongwe, Malawi
Milly Nakafeero	Kawanda/National Agricultural Research Organization (NARO) Kampala, Uganda
Jalia Namakula	Kawanda/National Agricultural Research Organization (NARO) Kampala, Uganda
William N Nanyeenya	National Agricultural Research Organization (NARO) Kampala, Uganda
Nhantumbo Nascimento	Instituto Superior Politecnico de Manica (ISPM) Vanduzi, Mozambique
Teilhard Ndayiramya	University of Rwanda Gikondo, Rwanda
Christine Ndinya	Kenya Agricultural and Livestock Research Organization (KALRO) Kakamega, Kenya
Thembi Ngotho	Agricultural Research Council (ARC) Pretoria, South Africa
Cynthia Ngwane	Agricultural Research Council (ARC) Pretoria, South Africa
Amos Ngwira	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Charles Nkonge	Kenya Agricultural & Livestock Research Organization (KALRO) Nairobi, Kenya
Ganga Rao NVPR	International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Nairobi, Kenya

Isaiah Nyagumbo	International Maize and Wheat Improvement Center (CIMMYT) Harare, Zimbabwe
Martins Odendo	Kenya Agricultural and Livestock Research Organization (KALRO) Kakamega, Kenya
Ludovicus Okitoi	Kenya Agricultural and Livestock Research Organization (KALRO) Kakamega, Kenya
Godfrey A Otim	Ngetta Zonal Agricultural Research and Development Institute (NZARDI) Entebbe, Uganda
Yolisa Pakela-Jezile	Agricultural Research Council (ARC) Pretoria, South Africa
Maria da Luz Quinhentos	Instituto de Investigação Agrária de Moçambique (IIAM) Manica, Mozambique
Daniel Rodriguez	Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Gatton, Australia
Bernard Rono	Kenya Agricultural Research Institute (KALRO) Embu, Kenya
Caspar Roxburgh	Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Sydney, Australia
Emile Pacifique Rushemuka	University of Rwanda Gikondo, Rwanda
Pascal Nsengimana Rushemuka	Rwanda Agriculture and Animal Resources Board (RAB) Rubilizi, Kigali-Rwanda
Leonard Rusinamhodzi	International Maize and Wheat Improvement Center (CIMMYT) Nairobi, Kenya
John Sariah	Selian Agricultural Research Institute (SARI) Arusha, Tanzania
Peter Setimela	International Maize and Wheat Improvement Center (CIMMYT) Harare, Zimbabwe
Pacsu Simwaka	Ministry of Agriculture, Department of Agricultural Research Services Lilongwe, Malawi
Isabel Sitoe	Instituto de Investigação Agrária de Moçambique (IIAM) Chimoio, Mozambique
Donald Siyeni	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Sarah E Tione	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi
Rose Ubwe	Selian Agricultural Research Institute (SARI) Arusha, Tanzania

Michael Waithaka	Unaffiliated, independent consultant Nyeri, Kenya
Dagne Wegary	International Livestock Research Institute Addis Ababa, Ethiopia
Vincent Weyongo	Kenya Agricultural and Livestock Research Organization (KALRO) Kakamega, Kenya
Erin Lynn Wilkus	Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Gatton, Australia
Esnart Yohane	Ministry of Agriculture Irrigation and Water Development (MOAIWD) Lilongwe, Malawi

Acronyms and abbreviations

ACIAR	Australian Centre for International Agricultural Research
ACMAD	African Centre of Meteorological Application for Development
ADOPT	Adoption and Diffusion Outcome Prediction Tool
AEZ	agroecological zones
AGREN	Agricultural Research and Extension Network
AIP	agricultural innovation platforms
AIS	agricultural innovation systems
AMESD	African Monitoring of the Environment for Sustainable Development
APSIM	Agricultural Production Systems slMulator
ARC	Agricultural Research Council
ASARECA	Association for Strengthening Agricultural Research in Eastern and Central Africa
ASCII	American Standard Code for Information Interchange
BARC	Bako Agricultural Research Center
с	carbon
CA	conservation agriculture
CAADP	Comprehensive Africa Agriculture Development Program
CASI	conservation agriculture-based sustainable intensification
CCAFS	Climate Change, Agriculture and Food Security
CEC	cation exchange capacity
CGIAR	formerly the Consultative Group for International Agricultural Research
CIMMYT	International Maize and Wheat Improvement Center
CMIP	coupled model intercomparison project
cm	centimetre
cmol	centimole
CV	coefficient of variation
CORDEX	Coordinated Regional Downscaling Experiment
CSA	climate-smart agriculture
CSIRO	Commonwealth Scientific and Industrial Research Organisation
EIAR	Ethiopian Institute of Agricultural Research
ELD	Economics of Land Degradation
ENACTS	Enhancing National Climate Services
ESA	eastern and southern Africa
EUMETSAT	European Organization for the Exploitation of Meteorological Satellites
FAO	Food and Agricultural Organization
FISP	Farm Input Subsidy Programme
FURP	Fertilizer Use Recommendation Program
g	gram
GCM	general circulation models
GMES	Global Monitoring for Environment and Security

GPCC	Global Precipitation Climatology Centre
ha	hectare
hPa	hectopascal
HPW	haulm plus pod wall
IAASTD	International Assessment of Agricultural Knowledge, Science and Technology for Development
ICRISAT	International Crops Research Institute for the Semi-Arid Tropics
IIAM	Instituto de Investigação Agrária de Moçambique (Mozambique)
IIED	International Institute for Environment and Development
ILRI	International Livestock Research Institute
IPCC	Intergovernmental Panel on Climate Change
IRI	International Research Institute for Climate and Society at Columbia University
ISPC	Independent Science and Partnership Council
ISPM	Instituto Superior Politécnico de Manica
К	potassium
KALRO	Kenya Agricultural and Livestock Research Organization
KARI	Kenya Agricultural Research Institute
kcal	kilocalorie
kg	kilogram
km	kilometre
I	litre
m	metre
mg	milligram
mm	millimetre
MG	megagram
Mha	million hectare
MSG	Meteosat Second Generation
Mt	million tonne
Ν	nitrogen
NARES	National Agricultural Research and Extension System
NARL	National Agricultural Research Laboratories
NARO	National Agricultural Research Organization
NARS	National Agricultural Research System
OA	Oxfam America
oc	organic carbon
PUMA	Preparation for the Use of MSG in Africa
QAAFI	Queensland Alliance for Agriculture and Food Innovation
RANET	Radio and Internet for the Communication of Hydro-Meteorological and Climate Related Information
RETIM	Reseau de Transmission d'Information Météorologique
RFE	African Rainfall Estimation Algorithm
SC	soil carbon
SI	sustainable intensification

SIMLESA	Sustainable Intensification of Maize–Legume Systems for Food Security in Eastern and Southern Africa
SLM	sustainable land management
SNNP	Southern Nations and Nationalities and People
SoRPARI	Somali Region Pastoral and Agro-pastoral Research Institute
SPSS	Statistical Package for Social Scientists
SSA	Sub-Saharan Africa
SST	sea surface temperature
t	tonne
WMO	World Meteorological Organization
yr	year
ZimCLIFS	Zimbabwe Crop Livestock Integration for Food Security
μg	microgram

Introduction

Agricultural intensification is essential to boost household food security and incomes for African smallholder families, to feed growing African cities and to contribute to the expanding global demand for food in the coming decades.

The maize mixed farming system, which extends from Ethiopia in the north to Mozambique in the south, already underpins food supply in eastern and southern Africa. However, effective intensification is threatened by widespread degradation of land and water resources from Capetown to Cairo. Scientists and policymakers also recognise that the pathways for intensification must be sustainable for decades to come, hence the concept of sustainable intensification and its association with conservation agriculture (as conservation agriculture-based sustainable intensification (CASI)). CASI has been embraced by many governments in the region—most notably in high-level events in 2015 and 2019 convened by the Association for Strengthening Agricultural Research in Eastern and Central Africa.

This publication is a valuable compendium of research-for-development achievements from the *Sustainable intensification of maize–legume cropping systems for food security in eastern and southern Africa* (SIMLESA) program. It covers many aspects of CASI, including climate variability, soil erosion, market access, crop and livestock productivity, and policy.

Overall, a large number of smallholder families adopted and benefited from SIMLESA research results before the program closed. In the words of Josefa Leonel Correia Sacko, Commissioner, Rural Economy and Agriculture of the African Union, 'looking at #SIMLESA's evidence, we can say that #conservation agriculture works for our farmers'.

Both sustainable intensification and CASI are associated with sustainable agriculture and land restoration, embracing environmental, economic and social aspects of sustainability and underpinning increased food production, diversification and food and nutritional security. Food security has been a concern of many societies since the dawn of settled agriculture about 10 thousand years ago, when fertile land resources were abundant and the global population might have been less than the current population of Malawi (19.1 million). Now there is widespread degradation of African land resources upon which the population of 1.3 billion primarily depends for food. The population of Africa is projected to nearly double to almost 2.5 billion by 2050.

Strategies to address agricultural intensification and food security challenges have evolved over the centuries. Beyond the simple Malthusian population and food production concept, some milestones in the evolving debate include the Club of Rome analysis in the 1960s, the Food Summit in the 1970s, the Bruntland environment and sustainable development report in the 1980s, the Rio Earth Summit in the 1990s, the United Nations Millennium Development Goals in 2000 and the Sustainable Development Goals in 2015.

Framed by the Millennium Development Goals in 2009, the SIMLESA program was formulated for the eastern and southern African region by African research leaders, international researchers from the International Maize and Wheat Improvement Center, Australian scientists and the Australian Centre for International Agricultural Research. At the time, the region suffered from rampant rural poverty and hunger, widespread soil erosion, extreme seasonal variation in food crop yields and striking gaps between farmers' actual and potential food crop yields. These conditions were prevalent across the maize mixed farming system in at least eight countries in the region, from Ethiopia to Mozambique. To add to the challenge, national agricultural research institutes were under-budgeted in many countries and the once-strong multidisciplinary and participatory skills of farming system research teams had been eroded in favour of disciplinary research. Of great concern, there had been little improvement in food security, agriculture or resource management over the preceding decade.

Because of the prevalence of similar food production and security constraints across the maize mixed farming systems, SIMLESA was designed as a regional program. Rather than reinforcing the prevailing disciplinary research, for example strengthening varieties and fertiliser management research, the SIMLESA program sought different and new research approaches and themes to impact on the prevailing yield gaps, production risks, resource degradation and food insecurity in the region. The complexities of this multifaceted challenge called for context-specific participatory, integrated and systems research-for-development that would generate scalable, sustainable intensification technologies and knowledge.

Conservation agriculture was a promising approach, building on earlier experimentation in the region to improve soil moisture (green water) management and soil health, and reduce maize and legume yield gaps and seasonal variability. Natural complements to the conservation agriculture theme were drought-tolerant maize and legume varieties. Preliminary analysis identified other complementary research themes, namely farming systems modelling, multistakeholder innovation platforms and appropriate-scale mechanisation. In order to assure widespread impact, complementary research-in-development on scaling models appeared potentially valuable, including socioeconomic constraints to adoption, commercial seed multiplication and distribution, and managed spillovers of research results between countries. During the formulation process, research on appropriate-scale mechanisation and socioeconomic constraints to adoption of CASI were spun off into complementary regional research projects.

The development of the research design in exceptionally close consultation with eight countries of the region and Australia underpinned two other distinguishing features of SIMLESA: strong national ownership of, and substantial national co-investments in, the program. During two phases over nine years, the program research generated technologies that significantly increased productivity, resilience and household food security. These were scaled to nearly half a million farm households and spilled over to neighbouring countries. The program results established the confidence of agricultural leaders in sustainable intensification as a pathway to food security and economic development.

The research results are documented in 40–50 scientific articles and summarised in administrative reports such as the final program report, and the research data are publicly available through international databases. However, as a complement to the scientific papers and administrative reports, this book contains a unique set of analyses of SIMLESA activities written by the actual researchers, comprising more than 60 African national scientists and 15 international and Australian researchers. In many respects, this book could be compared to the historical accounts of other major international research and development programs in Caqueza Valley (Columbia), Puebla Program (Mexico), the Green Revolution in India, Pakistan and Bangladesh or the rebuilding of Cambodian agricultural research early this century. It is yet another example of a successful large-scale international agricultural research partnership, which is the core approach of ACIAR, and of the immense value that arises from collaboration between Africa and Australia.

The 26 chapters of this book are grouped into five sections. Following the scene-setting opening chapters (Section I), the regional section (Section II) outlines key cross-cutting research as the context for Section III, in which the national multidisciplinary research teams—the voices of Africa—analyse national experiences. The fourth section discusses the potential for institutional reform and scaling of the research results in the region. The final section identifies possible ways forward, building on the SIMLESA results.

This book outlines many key lessons concerning CASI that can underpin improved productivity, soil health, resilience and food security, and ultimately contribute to the achievement of the United Nations Sustainable Development Goals. These are relevant, with adaptation, to all African regions, and it is hoped that African researchers, policymakers, research leaders and development agencies will find the volume of great value. More generally, this book will serve as a reference for those studying African agricultural science and food security. It will also be of interest to Australian and international scientists who wish to support the development of African farming and food systems.

John Dixon University of Queensland March 2020