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Abstract 31 

Assessment of forest carbon (C) stock and sequestration and the influence of 32 

forest harvesting and climatic variations are important issues in global forest ecology. 33 

Quantitative studies of the C balance of tropical forests, such as those in Papua New 34 

Guinea (PNG), are also required for climate change mitigation initiatives such as 35 

REDD+. We develop a hierarchical Bayesian model (HBM) of aboveground forest C 36 

stock and sequestration in primary, selectively-harvested, and El Niño Southern 37 

Oscillation (ENSO) effected lowland tropical forest from 15 years of permanent sample 38 

plot (PSP) census data for PNG.  39 

HBM parameters indicated; C stock in aboveground live biomass (AGLB) of 137 40 

± 9 (95% CI) MgC ha-1 in primary forest, compared with 62 ± 18 MgC ha-1 for 41 

selectively-harvested forest (55% difference); C sequestration in primary forest of 0.23 ± 42 

1.70 MgC ha-1yr-1 which was lower than in selectively-harvested forest, 1.12 ± 3.41 MgC 43 

ha-1yr-1; ENSO induced fire resulted in significant C emissions (-6.87 ± 3.94 MgC ha-1yr-44 

1). High variability between PSPs in C stock and C sequestration rates, and 45 

autocorrelation among remeasurements of individual PSPs, necessitated random plot 46 

effects for both stock and sequestration. The HBM approach allowed inclusion of 47 

hierarchical autocorrelation, providing valid confidence intervals on model parameters 48 

and efficient estimation. Model parameters have revealed the C balance of PNG’s forests 49 

and can be used as quantitative inputs for climate change mitigation initiatives. 50 

 51 

Key words: Biomass, Sequestration, Degradation, Selective-harvesting, REDD+, 52 

Carbon, Bayesian, Hierarchical. 53 
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Introduction 54 

Tropical forests cover 10% of global land area but remain a scientific frontier due 55 

to structural and biological complexity and high temporal variability associated with 56 

complex successional processes (Chambers et al. 2001). A constraint is the limited 57 

number of long-term studies quantifying tropical forest dynamics and the impacts of 58 

anthropogenic and natural disturbances, such as harvesting and fire (Clark et al. 2001b; 59 

Lewis et al. 2009). Long-term studies, whilst difficult to maintain, especially in 60 

developing countries, are essential to the development and testing of hypotheses 61 

regarding processes and rates of ecological recovery following disturbance, both 62 

anthropogenic and natural (Taylor et al. 2008). In this study we report on a spatially and 63 

temporally extensive Permanent Sample Plot (PSP) network in forests in Papua New 64 

Guinea (PNG) and examine the impact of selective-harvesting and the El Niño-Southern 65 

Oscillation (ENSO) induced fires on forest carbon (C) and C sequestration. To achieve 66 

this, we develop a hierarchical Bayesian model (HBM) and derive parameters that can be 67 

used to estimate the C and CO2 balance of selective-harvesting, forest regeneration and 68 

degradation after fire which are important inputs for climate change mitigation initiatives. 69 

There is still considerable debate over carbon dynamics in primary tropical 70 

forests. Field measurements of C stock change suggest that primary tropical forests are a 71 

significant C sink (Phillips et al. 1998; Baker et al. 2004a). For example, Lewis et al. 72 

(2009) examined C stock development for PSPs in Africa and reported that primary forest 73 

is on average sequestering 0.63 MgC ha-1 with 95% confidence interval (CI) 0.22–0.94. 74 

The study of Lewis et al. (2009) is consistent with other studies on the C balance of 75 

forests, in that they combine PSP measurements across time and space, and report an 76 
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average and a 95% CI.  Other authors suggest that primary forest should be in 77 

equilibrium with C sequestration in growth largely balanced by C emissions due 78 

mortality and decomposition (Clark 2001b; Wright 2005; Sierra et al. 2007). The role of 79 

recovering forest as a C source or a C sink remains poorly understood (Grassi et al. 2008; 80 

Olander et al. 2008; Ramankutty et al. 2007), and there is contention over the extent and 81 

recovery of forests in PNG after selective-harvesting (Shearman et al. 2009; Filer et al. 82 

2010; Shearman et al. 2010). Studies elsewhere suggest that species differences in wood 83 

density are an important consideration in assessing rates of carbon sequestration in 84 

tropical regrowth forests (Enquist et al. 1999; Malhi et al. 2004). Other disturbances have 85 

also been important in PNG forests. In 1997 and 1998, the 20th century’s most intense El 86 

Niño Southern Oscillation (ENSO) event provoked severe droughts across equatorial 87 

tropical forests which induced forest fires and severely affected C stock (Nepstad et al. 88 

2004). Catastrophic mortality events such as fires drive tropical forest structure and 89 

dynamics (Connell 1978; Johns 1986, 1989), and their impact needs further investigation 90 

(Phillips et al. 2004). 91 

Tropical forests play a crucial role in the global C cycle through the storage and 92 

sequestration of C in living forest biomass. This has been recognised in international 93 

climate change negotiations with the initiative to include reduced CO2 emissions from 94 

deforestation and forest degradation (REDD+) coupled with the enhancement of forest C 95 

stocks through forest restoration, sustainable forest management and forest conservation 96 

in developing tropical countries (UNFCCC 2009). REDD+ can potentially offer 97 

economic, environmental and social benefits with the intersection of carbon markets, 98 
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climate and environmental protection and, if implemented appropriately, could provide 99 

wider social and economic opportunities for indigenous people.  100 

PNG has over 28 M ha of tropical forests which have been subject to a high rate 101 

of conversion due to timber harvesting and agriculture (Shearman et al. 2008, Filer et al. 102 

2009), and has therefore become a focus of REDD+ initiatives. However, significant 103 

policy, institutional and technical challenges need to be overcome before REDD+ 104 

becomes operational. Technical challenges include: estimation of forest C stock in 105 

different forest stratum (Gibbs et al. 2007; Fox et al. 2010); change in these stocks due to 106 

forest harvesting (Kauffman et al. 2009) and forest fires (Phillips et al. 2004); and 107 

estimating rates of C sequestration in primary and regenerating forests across the forest 108 

estate (Olander et al. 2008). Purchasers of reduced emission credits (whether they be 109 

international organisations, other countries or corporate entities) will require assurance 110 

that estimates of C stock, C sequestration, and reductions in net CO2 emissions are 111 

accurate and precise. All these challenges have high scientific currency given the urgency 112 

of climate change mitigation coupled with the loss of biodiversity associated with 113 

deforestation and degradation in the tropics (Venter et al. 2009).  114 

Given the importance of discussions on the global carbon balance and the climate 115 

mitigation potential of tropical forests, there is a need to identify improved statistical 116 

approaches that go beyond simply averaging across datasets and constructing 95% CIs. 117 

One of the challenges with statistical analysis of PSP data is autocorrelation between 118 

measurements. Autocorrelation eventuates when spatial, temporal, or hierarchical 119 

variation cannot be captured by deterministic model structures (such as a simple mean) 120 

reducing estimation efficiency and biasing hypothesis tests on estimated parameters or 121 
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inferences on the average such as a 95% CI (Fox et al. 2001). It is likely that 122 

autocorrelation is pervasive in models of forest C stock and sequestration, as they are 123 

parameterised using data that has an implicit hierarchical structure; trees are nested 124 

within plots which are repeatedly measured through time and/or space. Furthermore, 125 

studies have observed strong spatial and temporal variation in C stocks (Rolin 2005; 126 

Malhi and Wright 2004); however, examination of the literature reveals that these 127 

variations are rarely accounted for. This is significant given that these models are being 128 

used to estimate the C balance of forests and more recently, as quantitative input to 129 

forest-based climate change mitigation initiatives.  130 

Hierarchical Bayesian models (HBMs) can facilitate the explicit modeling of 131 

autocorrelation (Clark 2005; Clark and Gelfand 2006; Cressie et al. 2009). The objective 132 

of this study is to test the HBM approach for modelling forest C stock and sequestration 133 

in PNG’s forests. 134 

Materials and Methods 135 

PNGFRI Permanent Sample Plots 136 

The PNG Forest Research Institute (PNGFRI) established a system of PSPs in the 137 

early 1990s, some in forest immediately after selective-harvesting, and others in primary 138 

forest across PNG (Figure 1). Plot measurements spanned the ENSO event which induced 139 

fires in many lowland tropical forests in PNG in 1997 and 1998 (Barr 1999). The same 140 

ENSO event was observed to cause drought and increased tree mortality in Sarawak 141 

(Nakagawa et al. 2000), and in the Amazon (Cochrane et al. 1999; Laurance et al. 2004). 142 

These PSPs are described in detail elsewhere (Fox et al. 2010). In summary, the PSPs 143 

consist of 133, 1 ha (100 m x 100 m) plots, a majority of which (121) were established in 144 



 

 8 

selectively-harvested forests, while 12 plots were established in primary forests. To 145 

supplement our limited sample in primary forest we included an additional 22 146 

measurements of aboveground C as collated by Bryan et al. (2010). In total, we used 411 147 

measurements of aboveground C in selectively-harvested forests and 44 measurements in 148 

primary forest.   149 

Figure 1 near here 150 

Aboveground live biomass (AGLB) was estimated using the method of Fox et al. 151 

(2010) and the wet forest allometry of Chave et al. (2005). For tree , we denoted  the 152 

diameter in centimeters (cm),  the total height in meters (m), and  the wood specific 153 

gravity in grams per cubic centimeter (g cm ) derived from Eddowes (1977). For plot  154 

at date , we denoted  the total number of trees with DBH  10 cm and we computed 155 

, the aboveground living biomass (Eqn. 1). Consistent with previous studies, 156 

AGLB will be reported in megagrams per hectare (Mg ha ). For further details of the 157 

error correction methodology and biometric modelling used to estimate AGLB, refer to 158 

Fox et al. (2010). 159 

( )[ ]∑
=

×=
jdI

i
iiijd HDqAGLB

1

94.020776.0   (1) 160 

The C content of biomass is reported assuming that dry biomass is 50% C (Clark 161 

et al. 2001a, Houghton et al. 2001, Malhi et al. 2004). We then computed , the carbon 162 

stock of plot  at date  and applied a multiplier (1.1) to estimate the contribution of 163 

stems with DBH < 10 cm (Fox et al. 2010) (2). 164 

( ) 1.1
2
1

×= jdjd AGLBC  (2) 165 
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Details of allometry and AGLB calculations for supplementary primary forest 166 

data can be found in Bryan et al. (2010). Note that Bryan et al. (2010) also used the 167 

allometry of Chave et al. (2005) to estimate aboveground biomass. To make 168 

measurements from Bryan et al. compatible with the PSPs, the AGLB component of C 169 

stock is identified using the multiplier 0.88 for lowland and 0.78 for montane forest 170 

(Bryan et al. 2010). 171 

Hierarchical Bayesian model for C dynamics 172 

We modelled C stock and sequestration using a hierarchical state-space Bayesian 173 

model (Cressie et al. 2009). We benchmark all sequential measurements using a starting 174 

date  which corresponds to either the first measurement for primary (undisturbed) plots 175 

or the date of disturbance (selective-harvesting or 1998 for fire affected plots) for 176 

disturbed plots. Benchmarking plots in this way we can test for differences in the C stock 177 

and C sequestration rates for the three types of plots. We use random plot effects to 178 

account for the hierarchical structure of the data, and to incorporate year of measurement 179 

as a random effect to account for temporal autocorrelation.  180 

We use the notation ( )VN ,µ  to define the Normal distribution with mean µ  and 181 

variance V  and the notation ( )rsIG ,  to defined the Inverse-Gamma distribution with 182 

shape s  and rate r . We assumed that jdC was normally distributed, with variance 2σ  183 

and with mean equal to a linear function of t  with intercept a  and slope b . The intercept 184 

a  indicated the initial C stock, while the slope b  indicated the sequestration rate reported 185 

in megagrams C per hectare per year (MgC ha-1yr-1) (3). 186 

( )2,~ σtbaNC jjjd +  (3) 187 

 188 
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The full model (Model 1)  189 

We fitted a full model (denoted Model 1) inclusive of  (i) fixed effect  { } Sba ,,α  for plot 190 

status S  ( PS = for primary forest, H for selectively-harvested and B  for burnt plots) on 191 

both the slope b  and the intercept a , (ii) fixed effect { }{ }RTAba ,,,,γ   for altitude A , mean 192 

annual temperature T  and annual rainfall R  on both the slope and the intercept, (iii) plot 193 

random effects { }ba,β   on both the slope and the intercept, and (iv) annual random 194 

effects aδ  on the year of measurement for temporal autocorrelation. Elevation, 195 

temperature and precipitation were derived from the global high resolution climate 196 

surfaces of Hijmans et al. (2005) and were normalized using the function  197 

[ ] [ ])()()( xSDxxxf Ε−=  in order to facilitate Markov Chain Monte Carlo (MCMC) 198 

convergence.  199 

The intercept a  and slope b  for Model 1 can be defined as follows; 200 

daRaTaAajaSaj RfTfAfa ,,,,,, )()()( δγγγβα +++++=  (4) 201 

)()()( ,,,,, RfTfAfb RbTbAbjbSbj γγγβα ++++=  (5)  202 

We assumed a hierarchical structure for the model defining first-level priors for the plot 203 

random effects: { } { }( )ββ ,,, ,0~ baba VN  and for the annual random effects: ( )δδ ,, ,0~ ada VN . 204 

Second-level priors were assumed to be non-informative with large variances. For 205 

parameters denoted )100.1,0(~: 6×Nαα , for parameters denoted )100.1,0(~: 6×Nγγ , 206 

for variance parameters denoted V  and )100.1,100.1(~,: 3322 −− ××IGV σσ .  207 
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Model fitting 208 

Conditional posterior for each parameter was obtained using a Gibbs sampler (Gelfand 209 

1990) available through the JAGS software (http://www-210 

/software/jags/http://www-fis.iarc.fr/ martyn/software/jags/). We ran 211 

two MCMC simulations of 200 000 iterations. The ‘burn-in’ period was set to 212 

100 000 iterations and the ‘thinning’ to 1/200. We then obtained 1 000 estimations for 213 

each parameter. We checked chain convergence using the Gelman Rubin statistic 214 

(Gelman 2003). 215 

Model comparison 216 

We compared the full Model (Model 1) with two simpler models, denoted Model 2 and 217 

Model 3. Model 2 included only (i) fixed effects { } Sba ,,α  of plot status  on the slope 218 

and intercept and (ii) random plot effects { }ba,β  on the slope and the intercept. In Model 219 

2 covariates for Altitude, Precipitation and Temperature were not included, and neither 220 

was the random effect on the year of measurement. Model 3 included only fixed effects 221 

{ } Sba ,,α  of the plot status S on the slope and intercept. Model 3 did not include any 222 

random effects and is analogous to a classical approach.  223 

The DIC (Deviance Information Criterion) was used to compare models. The DIC is the 224 

sum of the mean deviance (with Deviance = -2 log(Likelihood)) and the number of 225 

parameters pD. A difference of more than 10 is taken as a rough index of difference 226 

between two models and rules out the model with the higher DIC (Spiegelhalter 2002). 227 

When DIC difference is less than 10, the best model is the one with the lower number of 228 

parameters pD, in accordance with the parsimony principle. 229 
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Parameter significance 230 

From the posterior distribution of each parameter, we computed a credible 95% 231 

confidence interval. If the interval included zero, we assumed that the parameter was not 232 

significantly different from zero. 233 

Predictive posterior of the carbon stock 234 

We computed the predictive posterior π  of )(tc , the carbon stock at time t (6). The 235 

predictive posterior included variability in the process (e.g. plot variability) and 236 

parameter uncertainty. We denoted Θ  the vector of parameters. 237 

( ) ( ) ( ) ΘΘΘ= ∫
Θ

dtCtC πππ )()(  (6) 238 

Results 239 

PNG PSP data structure 240 

There were a range of trends in C stock observed on the PSPs. For example, there was an 241 

exponential trend for Giluwe01 and Oomsi02 (Figure 2); a concave curvature with 242 

increasing sequestration after disturbance for Pasma01 and Umbuk01; and a linear trend 243 

for Mokol01 and Wasap01. Some PSPs exhibited high rates of C sequestration (above 3 244 

MgC ha-1yr-1; Wasap01, Mokol01, Oomsi02), while others (Giluw01, Pasma01, 245 

Umbuk01) indicated lower rates below 1.7 MgC ha-1yr-1. A simple linear model was 246 

found to provide the best generalised fit for C stock change. 247 

Figure 2 near here 248 

PSPs that were affected by ENSO induced fires in 1997/1998 generally had reduced C 249 

stock in live biomass in subsequent measures due to mortality; some PSPs recovered 250 
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from fire (UMBOI01, WCOST04, VAILA02), while other PSPs continued to degrade 251 

after fire (KAPUL02, IVAIN02, ORLAK01, Figure 3). 252 

Figure 3 near here 253 

To examine mean trends and variability in the PNG PSP data we constructed a graph 254 

(Figure 4) with measurements benchmarked against either the first measurement for 255 

primary plots or the date of disturbance (selective-harvesting or 1998 for fire affected 256 

plots) for disturbed plots. 257 

Figure 4 near here 258 

C stock and sequestration is highly variable across the PSPs. C stock in primary forest 259 

PSPs is generally (but not uniformly) higher than in selectively-harvested and burnt PSPs. 260 

C sequestration is generally positive on selectively-harvested PSPs and negative on PSPs 261 

burnt in 1997 or 1998 (Figure 4).  262 

HBM Model selection 263 

The estimated variation (assessed using DIC) is equivalent for models 1 and 2, which 264 

both include random effects, but is far larger for Model 3, which only includes fixed 265 

effects (Table 1). Despite having the same DIC, Model 2 is superior to Model 1 because 266 

it is more parsimonious, having fewer parameters (pD=210). None of the parameters for 267 

Altitude, Rainfall and Temperature, nor random effects on the year of measurement 268 

(temporal autocorrelation), were significantly different to zero. Therefore Model 2 was 269 

the preferred model for estimating C stock and sequestration. 270 

Table 1 near here 271 

Parameter estimates 272 

Table 2 and Figure 5 near here 273 
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The HBM approach was used to determine C stock at  and the average C sequestration 274 

across re-measurements for primary, harvested and ENSO burnt PSPs (Table 2 and 275 

Figure 5). C stock in primary forest (137 ± 9 MgC ha-1) is significantly higher than in 276 

harvested (62 ± 18 MgC ha-1) and burnt (70 ± 26 MgC ha-1) forest (Table 2). C 277 

sequestration in harvested forest (1.12 ± 3.41 MgC ha-1yr-1) is higher than C sequestration 278 

in primary forest (0.23 ± 1.70), but neither were significantly different to zero. C 279 

sequestration in burnt forest (-6.87 ± 3.98) is significantly negative. If we assume that 280 

primary and selectively-harvested forest C stock are representative averages across forest 281 

types and regions, then the change in C stock due to selective-harvesting (ΔCSH) is on 282 

average 75 MgC ha-1 (55%). We can construct an additive 95% CI for ΔCSH as 75 ± 25 283 

MgC ha-1 (or 55% ± 18%) 284 

There was a significant variance in the plot random effect for both the intercept (C 285 

stock at ;  = 641.4) and the slope (C sequestration rate;  = 1.29) indicating that 286 

plot to plot variation in C stock at  and C sequestration was high. The insignificance of 287 

covariates for temperature, rainfall, and altitude suggest that this was not driven by 288 

environmental conditions, but rather differences in forest types and species composition 289 

and the degree of disturbance from selective-harvesting or fire. 290 

Comparing confidence intervals for the parameters (Table 2) when random plot 291 

effects are included (Model 2) and excluded (Model 3) indicates that confidence intervals 292 

are narrower for all parameters for Model 3. This creates a false impression of precision 293 

in parameter estimates. When hierarchical variability is included in Model 2,  confidence 294 

intervals that reflect the true precision of parameter estimates result. Model 2 also 295 

explained far more variability in the data as indicated by the lower deviance (Table 1). 296 
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This is due to the high plot to plot variability in the intercept and slope which is captured 297 

using random parameters.  298 

Discussion 299 

Selective-harvesting results in the displacement of living forest biomass to non-300 

living biomass, a component of which is taken off site as wood products with the 301 

remaining displacement termed collateral damage and becoming decomposing residue on 302 

the forest floor (Blanc et al. 2009). Collateral damage in tropical forest harvesting can be 303 

large and consists of crown material, peripheral trees that are damaged during tree felling 304 

and that subsequently die, and tree boles used for bridge, road and deck construction 305 

(Johns et al. 1996; Feldpausch 2005). The enhanced pool of decomposing residue 306 

resulting from collateral damage in disturbed forest can be a significant source of CO2 307 

emissions (Keller et al. 2004, Feldpausch 2005).   308 

Although our sample of primary forest plots is small, we can estimate the change 309 

in C stock due to selective-harvesting (75 ± 25 MgC ha-1). This provides an estimate of 310 

the displacement of living aboveground biomass to collateral damage and wood products. 311 

However, our comparison is unbalanced and unmatched; we have far more observations 312 

in selectively-harvested forest, and plots were not designed for this comparison; matched 313 

plots in adjoining primary and selectively-harvested forest would provide a more valid 314 

comparison.  Nevertheless, an initial estimate of 55% reduction in AGLB could be a 315 

useful indicative figure for calculations of reductions in forest C due to commercial 316 

selective-harvesting in PNG. Similar reductions have been observed elsewhere, with 317 

surprising consistency; Lasco et al. (2006); Tangki and Chappell (2008); Faldpausch et 318 
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al. (2005); and Gerwing (2002) all observed 50% reductions in AGB in the Philippines, 319 

Borneo, Southern Amazon, and Brazilian Amazon respectively.  320 

Estimated change in C stock due to selective-harvesting can be used for 321 

preliminary national estimates of harvesting related emissions. PNG Forest Authority 322 

estimate that the area subject to selectively-harvesting between 1961, when commercial 323 

selective-harvesting commenced, and 2002 is approximately 3.4 million (M) hectares 324 

(PNGFA 2007). Based on our estimate of C reduction due to harvesting this equates to a 325 

total and average annual displacement of 255 ± 85 MtC and 6 ± 2 MtC yr-1 from living to 326 

non-living AGB respectively. Over this period approximately 43 M m3 of logs have been 327 

removed from PNG’s native forests (Bank of PNG (various); SGS (various)). If we 328 

assume 33% recovery of raw logs into timber products, and an average wood density of 329 

0.58 g cm-3 (Fox et al. 2010), then approximately 5 MtC will have been stored in timber 330 

products over this time. By this supposition, approximately 250 ± 85 MtC is either 331 

collateral damage left in the forest to decompose or is sawmilling residue. Decomposition 332 

of biomass in tropical forests occurs rapidly with woody material completely decomposed 333 

with the C fraction emitted as CO2 after 15 years (Keller et al. 2004; Chambers et al. 334 

2000). Assuming complete decomposition of collateral damage and sawmilling residue 335 

(which is often combusted), approximately 917 ± 312 Mt CO2 has been emitted due to 336 

selective-harvesting in PNG between 1961 and 2002. The year to year variability in 337 

emissions will be high due to variability in the rate of timber harvesting, particularly over 338 

the last 10 years (Bank of PNG 2009). 339 

There is high variability in previous estimates of C sequestration in secondary 340 

tropical forest. Some studies indicate less than 2.5 MgC ha-1yr-1 (Brown and Lugo 1990); 341 
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while others indicate sequestration of between 7.5 and 10 MgC ha-1yr-1 (Hughes et al. 342 

1999; Scatena et al. 1996); with many studies falling in the middle of this range with 343 

sequestration between 2.5 and 7.5 MgC ha-1yr-1 (Fehse et al. 2002; Uhl and Jordan 1984). 344 

Many of these studies were for heavily disturbed forest in early successional phases 345 

where sequestration is dominated by the growth of pioneers (Fehse et al. 2002). Our 346 

analysis included species-specific wood densities (Fox et al. 2010) to capture the true C 347 

contribution of low wood density pioneers (Baker et al. 2004a). A very large 95% CI (± 348 

3.41) on the parameter indicated similar variability in C sequestration after selective-349 

harvesting, possibly due to variation in successional stage, forest type, level of 350 

disturbance, edaphic conditions and the climatic regime in the period following 351 

disturbance. On average, observed C sequestration in regrowth in PNG was at the lower 352 

end of the range described above (1.12 ± 3.41 MgC ha-1yr-1, generally below 5 MgC ha-353 

1yr-1). This may be due to the lower levels of disturbance relative to secondary forest 354 

resulting from agriculture. Selective-harvesting will have resulted in variability in 355 

successional stages between, and also within, the large one hectare PSPs. Gaps created 356 

due to selective-harvesting will experience regeneration that can result in high 357 

sequestration, while undisturbed areas of latter successional forest may experience little C 358 

sequestration, or even negative sequestration due to mortality (Feeley et al. 2007). We 359 

also need to be mindful of a possible bias in our sample of secondary forest toward forest 360 

that contains future merchantable timber; heavily harvested secondary forest may have 361 

been avoided (Fox et al. 2010). 362 

The PSPs represent a valuable sample of selectively-harvested forest in the 363 

Oceania region with good spatial and temporal representation (Fox et al. 2010). We 364 
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contend therefore that the average sequestration (1.12 MgC ha-1yr-1), despite high 365 

uncertainty (± 3.41), is a sound estimate for C recovery rates after selective-harvesting. If 366 

we assume that the 3.4 M ha harvested between 1961 and 2002 is harvested at the annual 367 

rate of 0.083 M ha, then the net C sequestered since harvesting began can be calculated as 368 

(41*1.12*0.083 + 40*1.12*0.083 + 39*1.12*0.083….. 1*1.12*0.083) and is 369 

approximately equal to 80 MtC or 294 MtCO2 over this period. If we include parameter 370 

uncertainty in this estimate the 95% CI for sequestered C is 80 ± 244 MtC. Despite this 371 

high uncertainty, if the average sequestration occurred across selectively-harvested forest 372 

it would offset approximately one third of the emissions from decomposition of collateral 373 

damage and sawmilling residue (917 MtCO2). 374 

The observed uptake of C by primary tropical forests (Phillips et al. 1998) has 375 

become a point of contention in recent years (Clark 2001b; Wright 2005). Results for the 376 

limited number of plots in this study indicated a mean sequestration rate in primary forest 377 

of 0.23 ± 1.57 MgC ha-1yr-1. This figure is lower than biome averages for primary forest 378 

(0.44 MgC ha-1yr-1
, Phillips et al. (1998); 0.61 MgC ha-1yr-1, Baker et al. (2004b)). These 379 

higher than expected C sequestration rates for primary forest have led several authors to 380 

suggest a pervasive alteration of primary tropical forest dynamics from global 381 

environmental changes such as increased atmospheric CO2 (Phillips et al. 1998; Baker et 382 

al. 2004b; Lewis et al. 2009). Our limited sample suggests that PNG’s primary forests are 383 

not a net C sink, however, more samples are required to verify this. 384 

The ENSO event of 1997/1998 caused a drying out of lowland tropical forests in 385 

PNG, with large-scale wildfires causing widespread tree mortality. The estimated annual 386 

C emission in AGLB after this event is -6.87 (± 3.98) MgC ha-1yr-1. Balch et al. (2008) 387 



 

 19 

report a similar loss of AGLB of -8.5 MgC ha-1yr-1 for a large-scale fire experiment in 388 

Amazonian forests. Some of the PSPs in this study were measured for 10 years after 389 

ENSO-induced fires, and indicated that ΔCB is ongoing with net C emissions 10 years 390 

after the fire disturbance. Shearman et al. (2008) estimate that 350,000 ha has been 391 

affected by fire between 1972 and 2002. Assuming that fire impacts the forest C dynamic 392 

for 10 years, then emissions from fire affected forest over this period are approximately 393 

24 ± 14 MtC or 88 ± 51 MtCO2. Considering that ENSO events are predicted to become 394 

more frequent and more severe under climate change, the significant emissions as 395 

observed here have implications for global C cycles. 396 

There has been speculation (Shearman et al. 2009) that PNG’s secondary forests 397 

are degraded to the extent that they are incapable of recovery. The present study suggests 398 

otherwise, indicating that selectively-harvested forests are reasonably stocked after 399 

harvesting (62 ± 18 MgC ha-1), and are recovering C at the rate of 1.12 ± 3.41 MgC ha-400 

1yr-1. The high variability indicates that some plots are degrading but the bulk of plots are 401 

either maintaining or increasing biomass and carbon stock. If the average sequestration 402 

rate is maintained at a linear rate, it would take approximately 65 years for harvested 403 

forest to recover the 75 MgC ha-1 that was displaced during selective-harvesting.  404 

We have used HBM model parameters inclusive of valid parameter uncertainties 405 

for some initial estimates of CO2 emissions from harvesting and fires. These estimates 406 

can provide a quantitative basis for forest C accounting systems for PNG, and constitute 407 

country specific information required for Tier 3 compliant greenhouse gas inventories of 408 

forested land (IPCC 2006).  Analysis of carbon dynamics in PNG forests can be based on 409 

these estimates, published carbon book-keeping methods (e.g. Ramankutty et al. 2007; 410 
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Blanc et al. 2009) and elements of the Voluntary Carbon Standard (VCS 2008) to 411 

construct an appropriate forest C accounting system for PNG. Note that the initial 412 

emission estimates detailed in this paper include only aboveground C dynamics. A full C 413 

account would need to be inclusive of under-storey plants, lianas and vines, woody 414 

debris, litter, coarse and fine roots and soil C (Blanc et al. 2009). 415 

In this study, hierarchical autocorrelation was highly significant due to high plot 416 

to plot variability in both the intercept (C stock at ) and the slope (C sequestration). 417 

This has important implications for carbon dynamic models. Deterministic model 418 

structures fail to effectively explain these plot to plot differences, despite the inclusion of 419 

environmental variables (altitude, rainfall, and temperature). Explaining structural 420 

complexity and temporal variability in tropical forests is an ongoing scientific challenge 421 

(Chambers et al. 2001). As our understanding of this complexity improves there will be 422 

opportunities to include covariates in deterministic model structures that better explain 423 

site to site and plot to plot variability. Until this occurs it seems prudent to use model 424 

structures, such as HBM, that account for high site to site variability. 425 

The HBM model structure used in this study has several advantages over 426 

reporting averages and 95% confidence intervals. It avoided the presence of 427 

autocorrelation in model residuals that result in biased estimates of standard errors of 428 

parameter estimates (Johnston 1972), and bias in inference on averages or parameter 429 

estimates such as 95% CIs. When we excluded plot level random effects (in Model 3) the 430 

CIs for different parameters were considerably lower, creating a false impression of 431 

precision. This is statistically well known. When positive autocorrelation is present 432 

among residuals located on the same sampling unit (for example; several remeasurements 433 
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of a plot) then parameter CIs will be underestimated and hypothesis tests on the 434 

significance will be biased upwards and the type I error rate will be inflated, i.e. too often 435 

it will be concluded that the value is different from zero. Inferences on the parameters 436 

and averages are particularly important in light of controversies on the C balance of 437 

tropical forests. Many studies that have observed significant net C sequestration in 438 

primary tropical forest have failed to account for autocorrelation resulting from 439 

hierarchical data structures.  When autocorrelation is incorporated, estimation efficiency 440 

is improved, as each measurement is bringing information to the model, independent of 441 

other measurements. Efficiency considerations are important in light of the cost of 442 

tropical forest census. Given the importance of discussions on the global carbon balance 443 

and the climate mitigation potential of tropical forests, we need improved statistical 444 

methodology such as hierarchical Bayesian models which are more appropriate for 445 

tropical forest data from repeated plot measurements. 446 

In conclusion, we have reported defensible estimates of aboveground C and C 447 

sequestration in primary, selective-harvested, and ENSO burnt forest using a HBM. 448 

These estimates have improved our understanding of the forest C cycle in PNG, and 449 

provide quantitative inputs for climate change mitigation initiatives such as REDD+.  450 
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Figure Legends 710 

Figure 1. Spatial distribution of PNGFRI PSPs across PNG 711 

Figure 2. Trends in C stock after selective-harvesting 712 

Figure 3. Trends in C stock for plots affected by ENSO induced fires of 1997 and 1998 713 

Figure 4. PNG PSP data structure 714 

Figure 5. Predicted posterior for Model 2 with 95% confidence intervals inclusive of 715 

random plot variability on the intercept and slope 716 

 717 

  718 



 

 39 

Table 1. Model comparison 719 

 Deviance pD DIC 

Model 1 2762 217 3060 

Model 2 2777 210 3060 

Model 3 4100 7 4107 

 720 
721 
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Table 2. Parameter estimates for Model 2 722 

Parameter Explanation Parameter estimate 

95% CI 

M2* 

95% CI 

M3** 

 C stock t0 – Primary 137.00# ± 8.62 ± 6.90 

 C stock t0 – Harvested 61.74# ± 18.34 ± 7.53 

 C stock t0 – Burnt  70.17# ± 25.93 ± 13.91 

 C sequestration - Primary 0.23 ± 1.70 ± 1.11 

 C sequestration - Harvested 1.12 ± 3.41 ± 2.93 

 C sequestration - Burnt -6.87# ± 3.98 ± 3.10 

 
Variance on plot random 

effect on intercept 
641.40# ± 140.17 

 

 

Variance on plot random 

effect on slope 

1.29# 

 
± 0.85 

  

 Variance 30.92# ± 6.26 ± 63.47 

# Parameter estimate is significantly different to zero *Credible 95% confidence interval 723 

CI for Model 2 inclusive of random plot effects **95% for Model 3 with no random 724 

effects725 
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