
 

1 

Native forest individual-tree modelling in Papua New Guinea 1 

 2 

Julian C. Fox1*, Ghislain Vieilledent2,3, and Rodney J. Keenan1,4 3 

1. Department of Forest and Ecosystem Science, The University of Melbourne, 4 

Burnley Campus, 500 Yarra Blvd, Richmond, Vic. 3121, Australia. 5 

2. Cirad – UR105 Forest Ecosystem Goods and Services, TA C-105/D, Campus 6 

International de Baillarguet, F-34398 Montpellier Cedex 5, France. 7 

3. Cirad – Madagascar – DRP Forêt et Biodiversité, BP 904, Ambatobe, 101 8 

Antananarivo, Madagascar. 9 

4. Victorian Centre for Climate Change Adaptation Research, The University of 10 

Melbourne 11 

* Corresponding author: jcfox@unimelb.edu.au 12 

 13 

Abstract 14 

Quantitative study of the permanent sample plot (PSP) databases can provide insights 15 

into growth, mortality and recruitment processes driving forest dynamics. Modelling 16 

the dynamics of forest growth and yield provides opportunities for optimising 17 

silvicultural systems, and generating accurate growth and yield estimates which are 18 

fundamental to sustainable forest management. This paper will outline model 19 

development based on analysis of a large native forest PSP database in Papua New 20 

Guinea. We quantify the competitive influences affecting individual tree growth and 21 

mortality, and build predictive models for growth and mortality based on a 22 

hierarchical Bayesian modelling (HBM) methodology. The HBM method allows the 23 

parameterisation of a global model with species-specific parameters; therefore species 24 

level growth and mortality traits are preserved in model predictions, even for rare 25 

species. We examine a range of spatial and non-spatial competition indices for the 26 

PSP data and conclude that a simple non-spatial competition index (Basal area of 27 

competing trees within 20 metres of the subject) adequately characterises competitive 28 

influence on growth and mortality. In future work, species-specific HBM model 29 

paramerters can be used as the basis of a forest simulation system (see http://twoe.org 30 

for developments) to improved the design and intensity of selective-harvesting 31 

regimes at the community and concession level. 32 

 33 
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 34 

Introduction 35 

 36 

Forest industries are a major contributor to the national economy of PNG; the log 37 

export industry contributed 200 M Kina in 2003 and many people are dependent on 38 

timber industries for employment and income. Aside from being economically 39 

important, PNG’s forests play a vital role in sustaining the traditional subsistence 40 

livelihoods of most of the population and contribute significant environmental values. 41 

Unfortunately, the current level of harvesting by the log export industry is 42 

unsustainable and accessible primary forest is likely to be depleted in the next 15 43 

years (Shearman et al. 2009, Filer et al. 2010).  An economic challenge thus looms for 44 

PNG as revenues from log export based on primary forest dwindle. A major 45 

environmental challenge also looms from widespread forest degradation due to 46 

unsustainable and inappropriate forest harvesting.  47 

 48 

However, PNG’s forest resources have the capacity to continue to make a major and 49 

sustainable contribution to the PNG economy, while maintaining many of the other 50 

values that PNG society values from their forests. To achieve this, forest management 51 

needs significant reform. There are significant problems associated with many 52 

commercial timber operations in PNG (Forest Trends 2006). However, sustainable 53 

management of natural forests is considered an integral part of the future economic 54 

development of PNG. The National Forest Policy states that the forest resource will 55 

be managed for the broad range of commercial benefits and non-commercial values it 56 

can provide for present and future generations. Sustainable forest management 57 

requires a sound scientific understanding of the forest resource, enabling government 58 

policy, operational guidelines and adequate supervision of operations. Integral to this, 59 

information on forest growth and yield is required to identify more sustainable 60 

management options for PNG forests. This would also improve the market reputation 61 

of PNG timber and open new pathways and markets for forest products. 62 

 63 

Tropical forests cover 10% of global land area but remain a scientific frontier due to 64 

structural and biological complexity and high temporal variability associated with 65 

complex successional processes (Chambers et al. 2001). A constraint is the limited 66 

number of long-term studies quantifying tropical forest dynamics and the impacts of 67 
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anthropogenic and natural disturbances, such as harvesting and fire (Clark et al. 2001b; 68 

Lewis et al. 2009). Long-term studies, whilst difficult to maintain, especially in 69 

developing countries, are essential to the development and testing of hypotheses 70 

regarding processes and rates of ecological recovery following disturbance, both 71 

anthropogenic and natural (Taylor et al. 2008). The forests of PNG are structurally 72 

diverse and complex, and have rarely been studied. The comprehensive PSP database 73 

provides an opportunity to ameliorate this. Quantitative study of the PSP database can 74 

provide insights into growth, mortality and recruitment processes driving forest 75 

dynamics in PNG. 76 

 77 

The development of growth and yield models for PNG’s native forests has never been 78 

a priority for PNG Forest Authority (PNGFA), and this limited development has 79 

hindered the effective management of native forest resources. The only exception to 80 

this is the work on growth and yield undertaken by Alder (1998). Alder (1998) 81 

developed a stand level growth model called PINFORM based on the first 82 

remeasurement of a permanent sample plot (PSP) dataset. Unfortunately, PINFORM 83 

has not been routinely applied by PNGFA for forest planning or sustainable yield 84 

purposes. However, growth and yield models can be used for optimising silvicultural 85 

systems, and generating accurate growth and yield estimates which are fundamental to 86 

sustainable forest management. As part of ACIAR project FST/2004/061 the limited 87 

extent of growth and yield modelling in PNG is advanced with the development of 88 

individual-tree models for competition, growth and mortality. In future work, models 89 

will be developed for recruitment, and will be integrated into a forest simulation tool. 90 

The forest simulation tool is under development at (http://twoe.org). The tool;  91 

1) Manages and modifies PSP datasets for analysis of growth, mortality and 92 

recruitment; 93 

2)  It estimates model parameters using Hierarchical Bayesian Modelling; 94 

3)  Can be used to simulate forest dynamics. 95 

 96 

The individual-tree growth modelling approach is sufficiently flexible to 97 

accommodate forests with virtually any species mixture or size structure. Individual-98 

tree models are also age-independent, making them applicable to uneven-aged stands 99 

as commonly encountered in tropical forests. Many alternative growth and yield 100 

modelling methodologies exist and have been reviewed elsewhere (e.g. Vanclay 101 

http://twoe.org/�
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1994). It is the flexibility of the individual-tree growth model that has lead to its 102 

application to the native forest resource of PNG as much of the resource exists in 103 

mixed-aged, mixed-species stands, often of indeterminate age. 104 

 105 

Forest utilisation in PNG is increasingly occurring at the community level using 106 

small-scale sawmills to extract individual trees. This small-scale utilization is the 107 

basis of Forest Stewardship Council (FSC; an international body that outlines the 108 

social, environmental and economic requirements for certification) certification 109 

efforts that aim to empower landowners, improve livelihoods, preserve the natural 110 

environment, whilst facilitating sustainable development (Bun & Scheyvens 2007). 111 

To examine whether these operations are sustainable, growth models are required for 112 

predicting tree growth at the scale of the individual tree. They can then be used in 113 

community forestry to inform small-scale (individual-tree) scenario analysis; species-114 

specific carbon sequestration; and the impact of small-scale utilisation on carbon 115 

stocks. 116 

 117 

Individual-tree models characterise the competitive, growth, mortality and recruitment 118 

dynamics of individual trees; this is challenging in the complex and diverse tropical 119 

forests of PNG. This paper will outline model development based on analysis of a 120 

large permanent sample plot (PSP) network in PNG. We quantify the competitive 121 

influences affecting individual tree growth, and build predictive models for growth 122 

and mortality based on a hierarchical Bayesian modelling (HBM) methodology (Fox 123 

et al. 2011). One of the challenges with statistical analysis of PSP data is 124 

autocorrelation between measurements. Autocorrelation eventuates when spatial, 125 

temporal, or hierarchical variation cannot be captured by deterministic model 126 

structures (such as a simple mean) reducing estimation efficiency and biasing 127 

hypothesis tests on estimated parameters (Fox et al. 2001). PSP data has implicit 128 

hierarchical structure; trees are nested within plots which are repeatedly measured 129 

through time and/or space. HBMs are applied here because they can facilitate the 130 

explicit modeling of autocorrelation (Clark 2005; Clark and Gelfand 2006; Cressie et 131 

al. 2009). The hierarchical Bayesian approach also quantifies the response of growth 132 

and mortality to competition and tree size across the entire tree community; using 133 

hierarchical models with species random effects, we can estimate the variability of the 134 
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growth/mortality response between all species, including rare species with few 135 

observations (Dietze et al. 2008). 136 

 137 

Competition indices have been the subject of much attention in the forestry literature. 138 

Distance-dependent indices use the spatial positions of individual trees in their 139 

formulations whereas distance-independent indices do not. Because distance-140 

dependent indices incorporate the spatial pattern of competitors, it should follow that 141 

they provide an improved quantitative expression of competition. The various 142 

competition indices can be organised into several groups. Distance-dependent indices 143 

consist of distance weighted size ratio indices (e.g. Hegyi 1974), area overlap indices 144 

(e.g. Bella 1971), and area potentially available indices (e.g. Nance et al. 1987). 145 

Distance-independent indices consist of functions of subject tree attributes compared 146 

to the attributes of other trees on the plot (e.g. Stage 1973), and stand-level indices 147 

such as basal area per hectare and stems per hectare. The various competition indices 148 

described above have been quantified for trees from the PSP database in PNG, and 149 

will be compared in terms of their ability to predict individual tree dynamics. 150 

 151 

Methods 152 

 153 

PSP data 154 

Over the last 20 years Papua New Guinea Forest Research Institute has established 155 

and remeasured over 125 PSPs across PNG covering all major forest types. Each plot 156 

is one hectare in size and is divided into 25 sub-plots of 20 m x 20 m. The spatial 157 

location, diameter, height, and crown characteristics are recorded for all trees over 158 

10cm. The PSP database represents a strong basis for the development of individual-159 

tree models. Because individual trees in PSPs are spatially mapped, we can extricate 160 

the spatial competitive processes governing tree growth. The PSP data is described in 161 

detail elsewhere (see Fox et al. 2010 and Yosi et al. 2011). The PSP data is a 162 

compilation of plot remeasurements undertaken by PNG Forest Research Institute 163 

(FRI) since 1994. It has been affected by persistent errors that have hindered it 164 

usefulness for modelling. A considered error correction methodology was required to 165 

correct persistent errors affecting the PSPs as described in Fox et al 2010. Following 166 

this, the PSP dataset was clean and ready for analysis. 167 
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 168 

Initially, competition indices are evaluated against individual tree growth for the PSP 169 

data. The outcomes of this evaluation then inform individual-tree model development 170 

for growth and mortality. Prior to evaluation of competition indices, allometric 171 

modelling was required to determine species specific relationships between diameter 172 

and crown diameter. 173 

 174 
Allometric modelling 175 
 176 
Diameter-Crown Diameter (DCD) allometry is required to quantify individual tree 177 

competitive dynamics. To achieve species-specific DCD models we fitted several 178 

non-linear models that were found to perform well for tropical forests in the study of 179 

Fang and Bailey (1998): the log-linear model (Alexandros & Burkhart 1992; 1); the 180 

hyperbolic model (Huang & Titus 1992; 2); and the exponential model (Fang & 181 

Bailey 1998; 3); 182 

 183 

bLogDaH +=   (1) 184 

)/( DbaDH +=   (2) 185 

( )( )min1 DDcebaH −−−+=  (3) 186 

 187 

Where: a, b and c are parameters estimated for each of the tree species; and Dmin is the 188 

minimum observed diameter for the species. 189 

 190 

Analysis revealed that the hyperbolic model (4) had a consistently lower mean 191 

squared error across species represented on PSPs. It was thus selected for crown 192 

diameter prediction on PSPs. This is the same model that was used to describe 193 

Diameter-Height (DH) allometry in Fox et al. (2010). To predict individual-tree 194 

merchantable volume, the same model was fitted to Diameter-Merchantable Height 195 
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(DMH) allometry. Table 1 provides species specific allometric parameters for DCD, 196 

DH, and DMH models for the 30 most numerous species on the PSPs. 197 

 198 

Table 1. Individual-tree allometric parameters for the hyperbolic model (2) fitted to 199 

DH, DMH, and DCD for the 16 most numerous species on PSPs 200 

Species Sp Code Character DH-a DH-b DMH-a DMH-b DCD-a DCD-b 

Calophyllum sp. CAL SP climax 66.1 43.7 30.5 32.7 49.6 217.9 

Canarium sp. CAN SP climax 56.1 34.4 30.0 31.6 24.4 77.2 

Celtis sp. CEL climax 71.5 49.0 31.7 38.9 22.3 65.9 

Cryptocarya sp. CRY SP climax 50.2 30.3 24.6 25.4 18.2 54.0 

Dysoxylum sp. DYS SP climax 55.1 38.8 24.2 29.3 19.3 54.2 

Ficus sp. (Fig) FIC SP climax 61.5 49.6 32.3 53.6 27.5 86.8 

Garcinia sp. GAR SP climax 57.6 39.3 32.4 40.6 15.5 38.7 

Horsfieldia sp. HOR SP climax 65.9 47.1 33.6 37.1 15.9 43.8 

Litsea sp. LIT SP climax 55.7 36.4 28.5 32.4 16.5 47.6 

Macaranga sp. MAC SP pioneer 52.7 36.5 28.6 40.7 10.9 21.8 

Myristica sp.  MYR SP climax 51.0 33.0 23.5 24.5 9.1 16.8 

Pimeleodendron amboinicum PIM AMB climax 53.3 35.6 26.5 34.4 14.4 38.9 

Planchonella sp. PLA SP climax 56.8 33.7 30.0 30.3 21.9 74.9 

Pometia pinnata  POM SP climax 53.1 32.4 25.5 30.5 21.0 58.7 

Syzygium sp. SYZ SP climax 55.7 37.1 27.9 32.3 18.3 56.3 

Terminalia sp. TER SP climax 62.4 41.1 38.9 48.0 20.6 56.9 

 201 

Allometric parameters described in Table 1 are the basis of look up tables in the forest 202 

assessment tool described in Fox et al. (2011) 203 

 204 
 205 
Competition indices 206 

 207 

Distance weighted size ratio competition indices 208 

The distance weighted size ratio (DWSR) competition indices include those that use 209 

the distance between trees weighted by their respective sizes in their formulations. 210 

Two for the most successful DWSR variants were quantified in this study and include 211 

that of Hegyi (1974) and Newnham (1966). The index of Newnham quantifies local 212 

density as the sum of angles subtended from the subject to either side of the stems of 213 

competitors. The two DWSR indices are described in Table 2. 214 

 215 
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Table 2. Distance Weighted Size Ratio competition indices. 216 

Index Formulation Author 

HEG ∑
= 
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Newnham (1966) 

Where; ni = total number of competitors for the subject i, Di = diameter at breast height for the subject 217 
tree i, Dj = diameter at breast height of the jth competitor, Disij = the distance in meters between the 218 
subject i and competitor j,  219 
 220 

The choice of which competitors to include when calculating DWSR indices is an 221 

unresolved problem (Burton 1993). To reduce subjectivity in estimates of competitor 222 

search radius, a methodology was used whereby an optimal search radius (OSR) was 223 

identified mathematically for each species. This could also provide insight into the 224 

range of the competitive dynamic affecting particular rainforest species. By 225 

examining the relationship between index performance and competitor search radius, 226 

it was confirmed that generally index performance approached a maximum value 227 

asymptotically. The point at which performance first began to level off was then 228 

estimated mathematically using a segmented, non-linear equation similar to the 229 

spherical semivariogram employed in geostatistics (e.g. Journel and Huijbregts 1978). 230 

This segmented, non-linear model was fitted to characterise the relationship between 231 

correlation of the index with growth and competitor search radius and can be 232 

described as (6):  233 

[ ])/(5.0)/(5.1 33 ββα iii srsrCorr −= , β≤isr  (6) 234 

α=iCorr ,     β>isr   235 

Where; sri is the search radius (i = 2 to 20 meters at 2 meter increments), Corri is the correlation 236 
between the competition index and annual diameter increment for search radius i, and α  and β are 237 

parameters estimated using the NLIN procedure in SAS (SAS Institute Inc. 1996). α  can be 238 
interpreted as an estimate of the maximum correlation and β interpreted as an estimate of the OSR.  239 

 240 

Area overlap competition indices 241 

The area overlap (AO) indices were formally introduced by Opie (1968), but the most 242 

successful formulation was presented by Bella (1971) as (7):  243 
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Where; AOi is the AO index of Bella (1971) for tree i, Zi is the area of the ‘zone of influence’ of the 245 
subject tree i, ZOij is the area of ‘zone of influence’ overlap between the subject i and competitor j. EX 246 
is the exponent applied to ratios, and previous studies have identified the optimal exponent as being 247 
between 1 and 3 (e.g. Bella 1971).  248 
  249 

The AO indices use a function of the area of overlap between a subject’s and a 250 

competitor’s ‘zone of influence’ to quantify competition. Their success depends on a 251 

suitable estimate of ‘zone of influence’ which is defined as the total area over which a 252 

tree obtains or competes for resources (Opie 1968). We use a prediction of crown area 253 

to quantify the zone of influence of each tree. Studies on the zone of influence have 254 

found that the area over which a tree obtains or competes for resources is 255 

approximately equivalent to the area enclosed by 2 crown radii (e.g. Bi and Jurskis 256 

1996). A crown radii prediction for each tree in the PSP dataset was generated using 257 

the allometric model for diameter to crown-diameter described in Fox et al. (2011b) 258 

 259 

Area potentially available competition indices 260 

 261 

The area potentially available (APA) indices, first introduced in the forestry literature 262 

by Brown (1965), are derived from the classical Voronoi diagram. The Voronoi 263 

diagram is a continuous tessellation of an area into non-overlapping polygons. Brown 264 

(1965) introduced APA indices to forestry as a means of quantifying the area 265 

potentially available for growth, and they have since been widely adopted as 266 

competition indices. Several variants exist, including the weighted APA (Moore et al. 267 

1973) and the weighted and constrained APA (Nance et al. 1987). The weighted APA 268 

(Moore et al. 1973) weights the position of the perpendicular bisector on the line 269 

joining a tree to its competitor by a ratio of tree sizes. Nance et al. (1987) proposed a 270 

weighted and constrained APA to curtail the development of large irregular polygons 271 

when spatial arrangements become irregular. When constructing the tessellation they 272 

selected the smaller of the distance to the polygon boundary or the output of a 273 

constraining function. Nance et al. (1987) proposed a function of crown radius as a 274 

constraining function, and this was realized using a constraining function based on the 275 

predicted crown radius for the subject tree. 276 
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 277 

Three variants of the APA index are described in Table 3.  278 
 279 
Table 3. Area potentially available competition indices. 280 

Index Weighting function Constraining function Author 
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APAWC ij
ji

i
ij Dis

DD
D

DB












+
=

)( 22

2
 

π

)/((
1

∑×
= =

t

j
ji

i

DDPA
CF  

 

Nance et al. (1987) 

Where; DBij = the distance to the perpendicular bisector located on the straight line between the subject 281 
i and competitor j 282 
 283 

The APA class of competition indices is the most complex to compute. A SAS Macro 284 

(SAS Institute Inc. 1990) was written for efficient computation of all APA variants 285 

along with DWSR, AO, and distance-independent. SAS Macros for quantifying the 286 

various competition indices detailed in this study are available upon request from the 287 

primary author. An example of the weighted and constrained APA (APAWC) for the 288 

Krisa PSP plot is shown in Figure 1. The spatial irregularity of the PSP plot can be 289 

observed. 290 

 291 

Figure 1. Graphic of the weighted and constrained APA for the Krisa PSP plot 292 
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 293 
 294 

Alleviating boundary effects 295 

 296 

A boundary effect is generated when boundary trees are subject to competition from 297 

outside the plot that is not incorporated in competition indices. To minimize 298 

information loss from exclusion of trees subject to edge effects, we used a toroidal 299 

edge correction scheme commonly used in spatial statistical applications (Ripley 300 

1981). Toroidal edge correction is implemented by considering a rectangular spatial 301 

array as a torus. This can be realized simply by translating the spatial arrangement to 302 

create eight new adjoining arrays. The validity of toroidal edge correction depends 303 

upon the assumption that boundary trees are subject to equivalent competition from 304 

both outside and inside the plot which is tenuous for trees close to the boundary in an 305 

irregularly structured tropical forest, i.e., less than 5 meters. But it should be 306 

permissible for trees more than 5 meters from the boundary. Following this trees 307 

within 5 meters of the boundary were excluded from analysis and toroidal edge 308 

correction was applied to all other trees. 309 

 310 

Distance-independent Competition indices 311 

 312 

Distance-independent indices consist of functions of subject tree attributes compared 313 

to the attributes of other trees on the plot (Stage 1973). They do not use spatial 314 
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information. The summed basal area of trees within 20 metres of the subject tree was 315 

quantified (BAS). The index developed by Stage (1973) was also quantified (8);  316 

∑
=

=
in

i
ii DDAL

1

   (8) 317 

 318 

Evaluating competition indices  319 

 320 

Competition indices were evaluated for their ability to predict annual diameter 321 

increment in the next growing period using two criteria. The first criterion was the 322 

correlation between the index and annual diameter increment in the next growing 323 

period. If the relationship between each variable and annual diameter increment was 324 

found to be non-linear, a transformation was sought which rendered the relationship 325 

linear. In these instances the fit of the transformed variable was evaluated. 326 

 327 

The second criterion was the significance of the competition index as fixed effect in a 328 

mixed model with basal area against annual diameter increment. Basal area was 329 

included as a fixed effect to extricate the influence of differing stand density on tree 330 

growth. A mixed model was used to account for the nested dependence (Fox et al. 331 

2001) affecting PSPs; the growth of trees within each PSP will be more similar than 332 

that between each PSP, as trees on the same plot will be subject to the same local 333 

environmental conditions, and will be of a similar forest type. To account for this a 334 

random effect was used for each PSP measurement. This will ensure correct statistical 335 

inference on the growth and competition dynamics within and between PSP plots 336 

(Fox et al. 2001). 337 

 338 

Individual tree models 339 

 340 

HBM model fitting 341 

 342 

Conditional posterior for each parameter was obtained using a Gibbs sampler (Gelfand 1990) 343 

written in C++. We used non-informative flat prior (with large variance) for each parameter. 344 

We ran one MCMC of 20 000 iterations for each parameter. The ‘burn-in’ period was set to 345 
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10 000 iterations and the ‘thinning’ to 1/10. We then obtained 1000 estimations for each 346 

parameter.  347 

 348 

Growth-model 349 
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Where; ikG  is the growth (mm.yr−1) of tree i of species k between dates t and t + 1 351 

iD  is the diameter (cm) of tree i at date t 352 

iC  is the competition index (m2.ha−1) in the neighborhood of tree i at date t 353 

β0, β1, β2 are global averages on the intercept, the slope of D and the slope of C, 354 
respectively 355 

0,k 1,k 2,k, ,b b b  are the species random effects on the intercept, the slope of D and the 356 
slope of C, respectively. 357 
 358 
Mortality-model  359 
 360 
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   (10) 361 

 362 
Where; ikS  is the status (0=alive, 1=dead) of tree i of species k between dates t and t + 363 
1 364 

iY  is the time interval (yr) between dates t and t + 1 365 

ikθ ′  is the mortality rate for time interval iY  366 

kθ  is the annual mortality rate 367 
 368 
For the mortality model, we included in the expression of ( )iklogit θ  a residual error 369 
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term ( )~ Normal 0,i Vε to account for overdispersion in the data (Hadfield, 2010). We 370 
fixed V to 1. Using this parametrisation was convenient as it placed the estimation in 371 
the linear Gaussian regression framework and allowed us to use conjugated priors for 372 
parameters.  373 
 374 

Results 375 

Competition indices 376 

Optimal competitor search radii 377 
 378 
Different trends in correlation across different search radii emerged for different 379 

species. An example of the fitted non-linear model for Hegyi’s (1974) index is shown 380 

in Figure 2. For Pometia Pinnata α  was estimated as 0.12, and β was estimated as 381 

13.7. These can be interpreted as an asymptotic correlation of 0.12, and an optimal 382 

search radius of 13.7 meters.  383 

 384 

Figure 2. Fitted non-linear model for estimating optimal competitor search radius for 385 

Pometia pinnata. 386 
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 388 

Estimated optimal search radii (OSR) for different species are detailed in Table 4. It 389 

can be observed that some species such as Calophyllum have small OSR values (3 m), 390 

while other species such as Horsfieldia have large OSR values (20m). These results 391 

suggest that the range of the competitive effect is different among tropical species. 392 

For example, it could be hypothesized that Calophyllum is most affected by 393 

competition for light among immediate neighbors (competitors within 3 meters) 394 
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whilst for Horsfieldia competition for light and nutrients is more diffuse and 395 

occurring over a larger area (up to 20 meters).  396 

 397 

Evaluating competition indices 398 

 399 

10 competition indices were quantified for approximately 85,000 individual tree 400 

measurements across the 125 permanent sample plots. The 300 most numerous 401 

species on PSPs were selected for specific study of competition indices. Preliminary 402 

analysis was used to identify a subset of competition indices for further study. The 403 

best performing indices were selected on the basis of strength of correlation with tree 404 

growth across the 300 species. The following subset was identified for further study;  405 

• DBHOB (Diameter at Breast Height Over Bark) 406 

• BAS (Sum of tree BA within 20m of subject) 407 

• SQAPAWC (Square Root of APASWC) 408 

• LNNEW (Natural Logarithm of NEW) 409 

• LNAO1 (Natural Logarithm of AO with exponent 1)  410 

 411 

The best performing competition index was then identified for each of the 300 species. 412 

Table 3 shows the competition indices ranked for the percentage of the 300 species 413 

for which they were optimal (in terms of correlation with annual diameter increment). 414 

Table 3 also shows the competition indices ranked for the number of times they were 415 

optimal in terms of fixed effect significance in a mixed model with basal area across 416 

the 300 species 417 

 418 

Table 3. Percentage of species for which each competition index was optimal  419 

Competition Index 

Correlation - Percentage of species 

optimal 

Mixed model - Percentage of 

species optimal 

DBHOB 14 18 

BAS 28 21 

SQAPAWC 15 13 

LNNEW 29 29 

LNAO1 14 19 

 420 
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Table 3 demonstrates that no single competition index is optimal across the 300 421 

species. It also demonstrates that distance-independent indices such as DBHOB and 422 

BAS are equally as effective as distance-dependent indices. BAS (28%, 21%) and 423 

LNNEW (29%, 29%) appear to be optimal most often across the 300 species. when 424 

basal area was included as a fixed effect in a mixed model, distance-dependent indices 425 

performed better (optimal for 61% of indices). This may be due to total basal area 426 

characterizing stocking differences across PSPs, and negating the influence of the 427 

distance-independent index BAS (28% down to 21%).  428 

To provide more detail of competition index performance, Table 4 provides further 429 

statistics for a subset of the 16 most observed species. 430 

 431 
Table 4. Competition index performance and other statistics for the 16 most observed 432 
species on PSP plots 433 

Species 

    

Obs 

  Optimal  

Corr 

Optimal  Effect  Wood  Diameter  
Mea

n  
Sp 
Code 

Characte
r 

OS
R Corr Mixed Sig 

Densit
y 90th Quan Incr 

Calophyllum sp. CAL SP climax 1072 3 BAS -0.16 BAS 4.00E-03 0.5 47 0.53 

Canarium sp. CAN SP climax 2323 6.9 BAS -0.2 BAS 6.30E-08 0.48 36.5 0.42 

Celtis sp. CEL climax 990 5.5 LNNEW -0.21 BAS 2.00E-04 0.55 50 0.52 

Cryptocarya sp. CRY SP climax 1993 7.4 BAS -0.09 LNAO1 6.00E-02 0.46 34.7 0.44 

Dysoxylum sp. DYS SP climax 1846 14.2 BAS -0.2 BAS 3.00E-17 0.62 39.9 0.38 

Ficus sp. (Fig) FIC SP climax 1536 5.9 BAS -0.2 DBHOB 2.90E-10 0.34 45.5 0.51 

Garcinia sp. GAR SP climax 1018 11.8 LNNEW -0.16 LNNEW 1.10E-04 0.64 31.5 0.37 

Horsfieldia sp. HOR SP climax 1682 20 LNNEW -0.14 LNNEW 1.30E-04 0.36 31.2 0.35 

Litsea sp. LIT SP climax 1022 5.7 BAS -0.25 LNAO1 7.30E-11 0.4 38.4 0.51 

Macaranga sp. MAC SP pioneer 1426 14.3 BAS -0.27 LNNEW 9.50E-12 0.3 22.8 0.96 

Myristica sp.  MYR SP climax 3113 9.6 BAS -0.16 LNNEW 1.40E-03 0.38 25.7 0.31 

Pimeleodendron 
amboinicum 

PIM 
AMB climax 1745 15.7 LNNEW -0.17 DBHOB 3.20E-07 0.48 39.8 0.42 

Planchonella sp. PLA SP climax 1683 9 LNNEW -0.21 LNAO1 4.90E-09 0.45 37.6 0.44 

Pometia pinnata  POM SP climax 2777 13.7 LNAO1 -0.16 LNAO2 2.60E-10 0.58 54.4 0.67 

Syzygium sp. SYZ SP climax 2854 10.8 BAS -0.17 BAS 4.10E-12 0.61 41.1 0.37 

Terminalia sp. TER SP climax 638 8.3 BAS -0.21 LNAO1 3.40E-07 0.45 46.3 0.67 
Where; Obs is the number of observations, OSR is Optimal Search Radius, Optimal Corr is the 434 
competition index with optimal correlation against annual diameter increment whilst Corr is the 435 
Spearman’s correlation coefficient, Optimal Mixed is the competition index with optimal effect 436 
significance in a mixed model and Effect Sig is the t test that the parameter is significantly different to 437 
zero, Wood Density is Basic Density; the weight of wood at 0% moisture content occupying one cubic 438 
meter (units: 103 kg/m3) from Eddowes (1977), Diameter 90th Quan is the 90th quantile of the diameter 439 
distribution, and Mean Incr is the average annual diameter increment in the next growing period. 440 
  441 
 442 

Individual-tree models 443 
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Growth (9) and mortality (10) individual tree models were fitted to the PSP data with 444 

random species effects. Fitted models resulted in global average parameters (β0, β1, β2 445 

in Equation 9 for growth, and Equation 10 for mortality) as well as species-specific 446 

parameters describing growth and mortality processes for each species (β0,k, β1,k, β2,k 447 

in Equation 9 for growth, and Equation 10 for mortality for species k). The growth 448 

and mortality of individual trees was a function of tree size (diameter), and the local 449 

competitive environment (sum of BA within 20m of subject). The Global model with 450 

global average parameters is detailed in Equation 11 for growth and Equation 12 for 451 

mortality; 452 

)1log()100.0()log()055.0()781.1()2log( ,2,1,0 ++−++++=+ ikikkik CbDbbG   (11) 453 

 454 

)20log()02069.0()20log()00262.0()741.3()(log ,2,1,0 −++−+−++−= ikikkik CbDbbit θ455 
  (12) 456 

 457 

Global trends in growth and mortality against tree size (Di) and competition (Ci) can 458 

be observed in Equation 11 and 12. Growth increases with increasing tree size 459 

(positive parameter on Di) but decreases with increasing competition (negative 460 

parameter on Ci). Both these observations are consistent with biological reality in 461 

tropical forests. Probability of mortality decreases with increasing tree size, but 462 

increases with increasing competition (parameters in Equation 12). Again, these 463 

observations are consistent with biological reality. 464 

 465 

Species-specific parameters such as b1,k in Equations (11) and (12) allow each species 466 

to express its individual traits with respect to growth and mortality. Species-specific 467 

model parameters for the 16 most numerous species on PSPs as well as predictions of 468 

growth and mortality for trees under conditions of low (10 m2/ha) and high 469 

competition (50 m2/ha) are detailed in Table 5. All predictions are for medium sized 470 

trees (40cm dbh). 471 

 472 

Table 5. Growth and mortality parameters and example predictions for 16 most 473 

numerous species on PSPs 474 

Species 
Sp 
Code Character G-b0 G-b1 G-b2 M-b0 M-b1 M-b2 GLC GHC MLC MHC 

Calophyllum sp. CAL SP climax 1.514 0.171 -0.093 -3.203 -0.003 -0.024 3.425 3.100 0.018 0.047 

Canarium sp. CAN SP climax 1.501 0.106 -0.074 -3.539 -0.005 -0.016 2.919 2.683 0.016 0.030 
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Celtis sp. CEL SP climax 2.484 -0.025 -0.221 -3.895 -0.007 -0.014 7.158 5.905 0.012 0.020 

Cryptocarya sp. CRY SP climax 1.610 0.071 -0.068 -3.300 0.014 -0.010 3.218 2.986 0.034 0.051 

Dysoxylum sp. DYS SP climax 1.261 0.190 -0.098 -3.904 0.003 -0.010 2.321 2.049 0.016 0.023 

Ficus sp. (Fig) FIC SP climax 1.786 0.094 -0.134 -3.362 -0.006 -0.017 4.029 3.513 0.018 0.035 

Garcinia sp. GAR SP climax 1.771 0.074 -0.149 -3.392 0.003 -0.019 3.664 3.129 0.020 0.041 

Horsfieldia sp. HOR SP climax 1.543 0.025 -0.042 -3.990 0.018 -0.004 2.664 2.537 0.023 0.027 

Litsea sp. LIT SP climax 1.728 0.138 -0.142 -3.428 0.013 -0.006 4.058 3.512 0.034 0.042 

Macaranga sp. MAC SP pioneer 2.482 0.002 -0.163 -2.712 0.000 0.018 8.133 7.089 0.052 0.102 

Myristica sp.  MYR SP climax 1.591 0.045 -0.086 -3.873 0.017 -0.005 2.827 2.559 0.024 0.030 
Pimeleodendron 
amboinicum 

PIM 
AMB climax 2.631 -0.230 -0.091 -4.139 0.027 -0.027 6.736 6.223 0.012 0.035 

Planchonella sp. PLA SP climax 1.565 0.132 -0.107 -3.544 0.013 -0.008 3.289 2.925 0.029 0.039 

Pometia pinnata  POM SP climax 1.493 0.109 -0.111 -3.663 0.007 -0.051 2.720 2.382 0.006 0.047 

Syzygium sp. SYZ SP climax 1.636 0.057 -0.102 -3.564 0.006 -0.021 3.060 2.728 0.017 0.038 

Terminalia sp. TER SP climax 1.889 0.073 -0.083 -3.814 0.019 -0.002 4.824 4.459 0.030 0.032 

Where G-b0, G-b1, G-b2 are parameters for the growth model (9), while M-b0, M-b1, 475 
M-b2 are parameters for the mortality model (10). GLC, GHC, MLC, MHC are 476 
growth (cm/yr) under low competition (10m2/ha), growth under high competition 477 
(50m2/ha), probability of mortality (between zero and one) under low competition, 478 
probability of mortality under high competition. 479 
 480 

It can be observed that growth under low competition is always higher than under 481 

high competition, and this makes biological sense. Similarly, probability of mortality 482 

under low competition is always lower than under high competition. For Macaranga, 483 

a pioneer species, probability of mortality is twice as high under conditions of high 484 

competition relative to low competition. 485 

 486 

Discussion 487 

 488 

Tropical forests are characterised by a high diversity of woody species, and no 489 

universally applicable species groupings exist that capture the continuum of growth, 490 

mortality and recruitment dynamics (Clark and Clark 1999). However, there is a need 491 

to group species for the development of forest growth models as grouping similar 492 

species increases the sample size, thus reducing parameter variance, and may result in 493 

fewer and more parsimonious models that can be more easily applied in forest 494 

management contexts. It is also important in the ecological insights it can offer on 495 

species growth habits. Ever since Whitmore (1975) first described tropical tree 496 

functional groups (fast growing shade intolerant pioneers, and slower growing shade 497 

tolerant climax species) researchers have been attempting to group species using a 498 

variety of strategies as reviewed by Gourlet-Fleury et al. (2005). Future work will 499 
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explore if competition indices can be used for species classification. For example, we 500 

can relate OSR values to the shade-tolerance of different species. We would expect 501 

that species with small OSR values that are most effected by competition for light are 502 

shade-intolerant, while species with large OSR with a more diffuse competitive affect 503 

are shade-tolerant. 504 

 505 

Table 4 also provides insights into tree attributes that could be used as a basis for 506 

species grouping. Wood density, growth rate, and potential size have been used in 507 

other studies to group species. Macaranga is a pioneer species with the largest growth 508 

rate (0.96 cm/yr), smallest potential size (22.8 cm), lowest wood density (300 kg/m3), 509 

and the strongest correlation for competition indices (0.27). This is congruent with 510 

previous findings that pioneer species tend to be fast growing, tend have small 511 

potential size, low wood density, and tend to be shade-intolerant with a life cycle 512 

characterized by rapid growth to capitalize on canopy gaps. Intolerance to shade from 513 

nearby trees explains the importance of competition indices in explaining future 514 

growth. In contrast to this Pometia Pinnata (Taun) is a climax species with a slower 515 

growth rate (0.67 cm/yr), large potential size (54.5 cm), denser wood (580 kg/m3), and 516 

weaker correlation for competition indices (0.16). Again, this is congruent with 517 

climax species being slower growing, having larger potential size, denser wood, and 518 

being more tolerant of shade from nearby trees. More tolerance to competition 519 

explains the weaker correlation of competition indices with future growth. The local 520 

spatial arrangement of soil fertility, topographic, geologic and climatic factors will be 521 

more important in explaining growth for shade-tolerant species. Other species in 522 

Table 4 fall on the continuum between pioneers such as Macaranga and climax 523 

species such as Pometia Pinnata. This brief analysis suggests that competition 524 

response as characterized by competition indices could be used as an additional 525 

attribute for species groupings in tropical forests. 526 

 527 

This analysis suggested that no single competition index is dominant, with indices 528 

BAS and LNNEW performing well. The optimal index for each species explained 529 

only a modest amount (14-27%) of the variability in diameter increment. However, 530 

indices were highly significant when evaluated in a mixed model with basal area per 531 

hectare. Failure to identify a single index as optimal in the mixed tropical forests of 532 

PNG could be associated with variability in competition response across the 300 533 
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species. Shade-intolerant species will compete strongly with first order neighbors for 534 

light and nutrients. The SQAPAWC most accurately characterizes these first order 535 

interactions. The LNAO1, and LNNEW competition indices may perform better for 536 

more shade-tolerant species as competition for light and nutrients would be more 537 

diffuse, less intense, and be occurring over a larger area. Following this hypothesis, 538 

distance-independent indices such as BAS and DBHOB would perform well for very 539 

shade-tolerant species for which the location and size of nearby competitors is 540 

relatively unimportant. Future work will attempt to align the shade tolerance of 541 

different species with the performance of different competition indices.  542 

 543 

Diameter performed well as a predictor of growth performing better than competition 544 

indices for 14% & 18% of species. This is in agreement with previous studies that 545 

have found that diameter is an excellent predictor of growth (Lorimer 1983). Diameter 546 

can be considered a historical log of past competitive interactions, genotypic 547 

differences, and localized environmental heterogeneity, and therefore tends to be 548 

strongly correlated with future growth. 549 

 550 

Tree growth is a complex process. It is influenced by an intricate network of above- 551 

and below-ground competitive interactions as well as the local spatial arrangement of 552 

soil fertility, topographic, geologic and climatic factors. The vast majority of current 553 

competition indices and growth models remain overly simplified (Fox et al. 2001). 554 

This over-simplification results in large amounts of unexplained variability, and 555 

growth modelers have come to accept this as an ‘occupational hazard’ (Burkhart and 556 

Gregoire 1994). Competition indices explained at best 25% of the variability in 557 

individual tree growth in mixed tropical forest in PNG. Future work requires insights 558 

into this unexplained variability that can improve growth model performance. Despite 559 

these shortcomings, the competition indices examined here, and the insights into 560 

competitive dynamics they provided, can guide further growth model development for 561 

mixed tropical forest in PNG. Work described in this paper represents an initial 562 

investigation of; 563 

1) competition index selection in tropical forests 564 

2) application of individual based models with demographic hierarchical 565 

Bayesian models including species random effects. 566 

Results suggest that the approach shows promise. Future work will fit a recruitment 567 
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model and use species-specific competition indices in growth/mortality 568 

models. 569 

 570 

The forest assessment tool is described elsewhere and is based on a stratified random 571 

variable radius plot inventory (Fox et al. 2011a). The assessment tool incorporates 572 

lookup tables that facilitate the calculation of plot- and estate-level above ground live 573 

biomass (AGLB; Mg/ha) and merchantable volume (MV; m3/ha). In future work, this 574 

forest assessment tool can then used as a basis for the individual-tree growth and yield 575 

module which can be used to simulate forest development into the future. Data from 576 

the forest assessment tool can be read into the forest simulation tool which is under 577 

development at (http://twoe.org). Using individual-tree HBM model parameters 578 

estimated from the PSPs, assessment data can be used as the basis of a simulation.   579 

Lookup tables for species-specific HBM parameters for a growth, mortality and 580 

recruitment models are available from the primary author. Each tree measured in the 581 

assessment therefore becomes a tree in the simulation that is subject to perturbations 582 

from growth and possible mortality into the future. New trees eventuate in the 583 

simulation from the recruitment model that uses tree density and species present on 584 

each plot to create a probability of recruitment. 585 

 586 

 A simple tree level simulator housed in accessible software (http://twoe.org) can 587 

assist community-level decision making with regards to the design and intensity of 588 

selective harvesting regimes. For example, after the forest assessment is complete, a 589 

simulation of a harvesting event can be implemented with different size limits, cutting 590 

intensities, and different species. For community forest management, this will allow 591 

communities to maximise returns from harvesting while preserving other forest values. 592 

Small-scale, high-value utilisation scenarios can be effectively explored using such 593 

models. Utilisation below unsustainable levels, which has been set in the simulator 594 

according to species specific growth rates, will ensure that high-end products can be 595 

harvested in community areas in perpetuity. 596 

 597 

PNGFA are moving to a new pre-harvest inventory method based on a stratified 598 

random variable radius plot inventory. This will replace the 1% strip-line inventory 599 

that is both inefficient and biased. Therefore, PNGFA can populate the assessment 600 

tool with inventory information and run scenarios for large scale logging using 601 

http://twoe.org/�
http://twoe.org/�
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software available at (http://twoe.org). The scenarios can help identify mode 602 

appropriate and sustainable harvesting in terms of size limits, species mixes and 603 

cutting cycles. Currently, a default size limit of 50cm is used on a 35 year cutting 604 

cycle. It is intended that the assessment and modelling tools developed as part of 605 

ACIAR project FST/2004/061 can help refine this approach for more sustainable 606 

forest harvesting. 607 

 608 
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