Farming Systems and Food Security in Africa

Knowledge of Africa’s complex farming systems, set in their socio-economic and environmental context, is an essential ingredient to developing effective strategies for improving food and nutrition security.

This book systematically and comprehensively describes the characteristics, trends, drivers of change and strategic priorities for each of Africa’s fifteen farming systems and their main subsystems. It shows how a farming systems perspective can be used to identify pathways to household food security and poverty reduction, and how strategic interventions may need to differ from one farming system to another. In the analysis, emphasis is placed on understanding farming systems drivers of change, trends and strategic priorities for science and policy.

Illustrated with full-colour maps and photographs throughout, the volume provides a comprehensive and insightful analysis of Africa’s farming systems and pathways for the future to improve food and nutrition security. The book is an essential follow-up to the seminal work *Farming Systems and Poverty* by Dixon and colleagues for the Food and Agriculture Organization (FAO) of the United Nations and the World Bank, published in 2001.

John Dixon is Principal Adviser Research & Program Manager, Cropping Systems and Economics, Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia.

Dennis Garrity is Senior Fellow at the World Agroforestry Centre (ICRAF), based in Nairobi, Kenya, UNCCD Drylands Ambassador, and Chair of the EverGreen Agriculture Partnership.

Jean-Marc Boffa is Director of Terra Sana Projects and Associate Fellow of the World Agroforestry Centre (ICRAF), Nairobi, Kenya.

Timothy Olalekan Williams is Regional Director for Africa at the International Water Management Institute (IWMI), based in Accra, Ghana.

Tilahun Amede is Principal Scientist and Systems Agronomist at the International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Nairobi, Kenya.

Christopher Auricht is Managing Director of Auricht Projects, a niche international consulting firm based in Adelaide, Australia.

Rosemary Lott is Director of Vegetation Connections Pty Ltd, and an Assistant Director, Australian Government Department of Agriculture, Canberra, Australia.

George Mburathi is a former FAO Deputy Regional Representative for Africa, Nairobi, Kenya.
Earthscan Food and Agriculture Series

Sustainable Intensification of Agriculture
Greening the World's Food Economy
Jules N. Pretty and Zareen Pervez Bharucha

Contested Sustainability Discourses in the Agrifood System
Edited by Douglas H. Constance, Jason Konefal and Maki Hatanaka

The Financialization of Agri-Food Systems
Contested Transformations
Edited by Hilde Bjørkhaug, André Magnan and Geoffrey Lawrence

Redesigning the Global Seed Commons
Law and Policy for Agrobiodiversity and Food Security
Christine Frison

Organic Food and Farming in China
Top-down and Bottom-up Ecological Initiatives
Steffanie Scott, Zhenzhong Si, Theresa Schumilas and Aijuan Chen

Farming, Food and Nature
A Sustainable Future for Animals, People and the Environment
Edited by Joyce D'Silva and Carol McKenna

Governing Sustainable Seafood
Peter Oosterveer and Simon Bush

Farming Systems and Food Security in Africa
Priorities for Science and Policy Under Global Change
Edited by John Dixon, Dennis P. Garnity, Jean-Marc Boffa, Timothy Olalekan Williams, Tilahun Amede with Christopher Auricht, Rosemary Lott and George Mburathi

Consumers, Meat and Animal Products
Policies, Regulations and Marketing
Terence J. Centner

For further details please visit the series page on the Routledge website: www.routledge.com/books/series/ECEFA/.
Farming Systems and Food Security in Africa
Priorities for Science and Policy under Global Change

Edited by John Dixon, Dennis P. Garrity, Jean-Marc Boffa, Timothy Olalekan Williams, Tilahun Amede
with Christopher Auricht, Rosemary Lott and George Mburathi

Routledge
Taylor & Francis Group
LONDON AND NEW YORK
earthscan
from Routledge
World Agroforestry Centre (ICRAF)

The World Agroforestry Centre (ICRAF) is a centre of scientific excellence that harnesses the benefits of trees for people and the environment. Leveraging the world’s largest repository of agroforestry science and information, we develop knowledge practices, for farmers’ fields to the global sphere, to ensure food security and environmental sustainability.

ICRAF is the only institution conducting globally significant agroforestry research in and for all of the developing tropics. Knowledge produced by ICRAF allows governments, development agencies and farmers to use the power of trees to make farming livelihoods more environmentally, socially and economically sustainable at scales.

ICRAF’s headquarters are based in Nairobi, Kenya, and we operate six regional programmes in Sub-Saharan Africa, Asia and Latin America. Our vision is an equitable world where all people have viable livelihoods supported by healthy and productive landscapes. Our mission is to harness the multiple benefits trees provide for agriculture, livelihoods, resilience and the future of our planet, from farmers’ fields through to continental scales.

About the Technical Centre for Agricultural and Rural Cooperation (CTA)

The Technical Centre for Agricultural and Rural Cooperation (CTA) is a joint international institution of the African, Caribbean and Pacific (ACP) Group of States and the European Union (EU). CTA operates under the framework of the Cotonou Agreement and is funded by the EU.

For more information on CTA, visit www.cta.int
Contents

<table>
<thead>
<tr>
<th>List of figures</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xv</td>
</tr>
<tr>
<td>List of boxes</td>
<td>xx</td>
</tr>
<tr>
<td>List of contributors</td>
<td>xxii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxvii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxix</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxxi</td>
</tr>
</tbody>
</table>

PART I

Introduction

1. **Africa through the farming systems lens: context and approach**

 John Dixon, Dennis Garrity, Jean-Marc Bozza, Adama Ekberg Coulibaly, Medhat El-Helepi, Christopher M. Auricht and George Mburathi

2. **Methods and data sources**

 Christopher M. Auricht, John Dixon, Jean-Marc Bozza, Harrrij Van Velthuizen and Günther Fischer

PART II

Analyses of farming systems

3. **Maize mixed farming system: an engine for rural growth and poverty reduction**

 Malcolm Blackie, John Dixon, Maxwell Mudhara, Joseph Ruseke, Sieglinde Snapp and Mulgetta Mekuri

4. **The agropastoral farming system: achieving adaptation and harnessing opportunities under duress**

 Jean-Marc Bozza, John Sanders, Sibiri Jean-Baptiste Taonda, Pierre Hiernaux, Minamba Bagayoko, Shadreck Ncube and Justice Nyamangara
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The highland perennial farming system: sustainable intensification</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>and the limits of farm size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Lynam</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The root and tuber crop farming system: diversity, complexity</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>and productivity potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samuel Adjei-Nsia, Godwin Asumugha, Emmanuel Njukwe and Malachy Akoroda</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The cereal-root crop mixed farming system: a potential bread basket</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>transitioning to sustainable intensification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amir Kassam, Eric Kueneman, Rosemary Lott, Theodor Friedrich,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nebambi Lutaladio, David Norman, Martin Bwalya, Anne-Sophie Poisot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Saidi Mkomwa</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>The highland mixed farming system of Africa: diversifying livelihoods</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>in fragile ecosystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tilahun Amede and Mulugeta Lemenih</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The tree crop farming system: stagnation, innovation and forest</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>degradation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jim Gockowski</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The pastoral farming system: balancing between tradition and</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>transition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan de Leeuw, Philip Osano, Mohammed Said, Augustine Ayantunde,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SikhalaZo Dube, Constance Neely, Anton Vrieleng, Philip Thornton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Polly Ericksen</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>The fish-based farming system: maintaining ecosystem health and</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>flexible livelihood portfolios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olivier Hamerlynck, Wanja Dorothy Nyangi, Jean-Luc Paul and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephanie DuVail</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The forest-based farming system: highly diverse, annual and perennial</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>systems under threat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stefan Hauser, Lindsey Norgrove, Eric Tollens, Christian Nolte,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valentina Robiglio and Jim Gockowski</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Large-scale irrigated farming system: the potential and challenges</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>to improve food security, livelihoods and ecosystem management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timothy OlaLekan Williams, Jean-Marc Faurès, Regassa Namara and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katherine Snyder</td>
<td></td>
</tr>
</tbody>
</table>
14 The arid pastoral and oasis farming system: key centres for the development of trans-Saharan economies
 MAHAMADOU CHAIBOU AND BERNARD BONNET
 450

15 Perennial mixed and island farming systems: exploiting synergies for maximum system productivity
 MAXWELL MUDHARA, JAN LOMBARD, ANTHONY PALMER AND JOHN DIXON
 482

16 Urban and peri-urban farming systems: feeding cities and enhancing resilience
 DIANA LEE-SMITH, GORDON PRAIN, OLUFUNKE COFIE, RENÉ VAN VEEHNUIZEN AND NANCY KARANJA
 504

PART III
Synthesis and conclusions
533

17 Farming and food systems potentials
 JOHN DIXON, JEAN-MARC BOFFA, TIMOTHY OLALEKAN WILLIAMS, JAN DE LEEUW, GÜNTER FISCHER AND HARRIJ VAN VELTHUIZEN
 535

18 Ways forward: strategies for effective science, investments and policies for African farming and food systems
 JOHN DIXON, DENNIS GARRITY, GEORGE MBURATHI, JEAN-MARC BOFFA, TILAHUN AMEDE AND TIMOTHY OLALEKAN WILLIAMS
 562

19 Conclusions: implementation of the farming systems approach for African food security
 DENNIS GARRITY, JOHN DIXON, GEORGE MBURATHI, TIMOTHY OLALEKAN WILLIAMS AND TILAHUN AMEDE
 589

Index
599
Figures

1.1 The farming systems of Africa ... 12
1.2 Farm household decision making .. 16
2.1 Approach to farming systems identification and characterization 44
2.2 Maps of farming systems of Africa in 2000 and 2015 45
2.3 Map of total population density in Africa in 2015 47
2.4 Distribution of length of growing periods by farming system (%) in sub-Saharan Africa ... 48
2.5 Map of 30-day interval LGP ... 49
2.6 Remotely sensed (1981–2011) derived average 30-day length of growing season data for two growing seasons 50
2.7 Relative distribution of 30-day LGP intervals in selected farming systems .. 50
2.8 Travel time to town with population of 50,000 in selected farming systems ... 52
2.9 Map of travel time to 50,000 town and farming systems boundaries 53
3.1 The maize mixed farming system and subsystems 69
3.2 A field day in Kandeu, Central Malawi ... 71
3.3 Direct seeding of maize with animal drawn seeder, Kisilo village, Njombe district, Tanzania ... 78
3.4 Average farm size trends in SIMLESA countries of eastern and southern Africa ... 80
3.5 Relative importance of constraints to maize yield in the maize mixed system .. 87
3.6 Maize fertilizer response from Nsipe, Ntcheu district, in Central Malawi ... 88
3.7 Relative suitability of main crops to the maize mixed system 89
3.8 Striga species limit yields in maize fields 95
3.9 Smallholder farmer demand constraints in the maize seed sector 96
4.1 Map of the agropastoral farming system in Africa 107
4.2 Cattle in the southeastern lowveld of Zimbabwe Limpopo Valley 108
4.3 Supplementary dry season feeding of velvet bean and maize 113
4.4 Variability of annual rainfall in the Sahel between 1900 and 2010 .. 121
4.5 Crop residues stored away from livestock 127
Figures

4.6 Dwarf SV2 sorghum variety
4.7 Cattle grazing maize stover near homestead, Nkayi district, Zimbabwe
4.8 Family field of velvet bean (Mucuna spp.)
5.1 Map of the highland perennial farming subsystems
5.2 Fragmented fields on densely cultivated hillsides on Lake Kivu shores in Gisenyi, Rwanda
5.3 Large-scale coffee plantation on Mount Kilimanjaro, Arusha area, Tanzania
5.4 Industrial robusta coffee plantation intercropped with fast-growing leguminous trees in Mubende, Uganda
5.5 Herfindahl indices of farming system diversification by agroecological zone in Kenya
5.6 Coffee washing at COOPAC’s Nyamwenda washing station in Gisenyi, Rwanda
5.7 Agricultural landscapes around Jimma, Oromya region, Ethiopia
6.1 Relative importance of food crops by harvested area in the root and tuber crop farming system
6.2 Maize-cassava intercropping system in Ibadan, southwestern Nigeria
6.3 Women processing cassava
6.4 Extent of the root and tuber crop farming subsystems in Africa
6.5 Rainfed suitability profiles for the root and tuber crop farming system
7.1 Map of the cereal-root crop mixed farming system and subsystems
7.2 Fulani herder settled in southwest Burkina Faso
7.3 A soybean and maize plot in southwestern Burkina Faso under no-till management
7.4 Household compound in Karaba area, near Bobo Dioulasso, Burkina Faso
7.6 Cassava farmer from Oyo State, Nigeria
7.7 Private-sector cassava processing for fermentation of ethanol
8.1 Location of the highland mixed farming system and its four subsystems in Africa
8.2 Coffee agroforestry field planted in maize with banana and scattered fruit trees, western region, Cameroon
8.3 Livestock-cereal subsystem in the northern Ethiopian highlands
8.4 Northern Ethiopian highland landscape of the wheat-pulse subsystem
8.5 Maize-based subsystem in central Ethiopian highlands
8.6 Herder with mixed herd grazing at the Lets’eng-la-Letsie Ramsar Wetland site, Lesotho
9.1 Location of the tree crop farming system in Africa
9.2 Distribution of household area planted to cocoa in the cocoa belt of west Africa
9.3 A farmer in his shaded cocoa plantation, Nkhol Bang village, Central Region, Cameroon

9.4 Phytophthora megakarya rot on cocoa pods, Ozom, Lékié Department, Cameroon

9.5 Total monthly crop production labour requirements for men and women in southern Cameroon

9.6 Cocoa bean extraction after the cocoa pod harvest

9.7 Proportion of staple food crop consumption procured from food markets versus home production for four farm size categories in Bia District, Ghana

9.8 Newly planted cocoa associated with cassava and plantain as temporary shade, in Bia District, Ghana

9.9 Relative investment costs for a $45 million industrial plantation subsystem of 6000 ha, employing 1,400 workers

9.10 Change in robusta coffee production and acreage in west Africa and Vietnam, 1980–2012

10.1 The pastoral farming system and subsystems

10.2 Sahelian transhumance routes across farming systems

10.3 Fulani boy in Niger herds his family animals

10.4 Spatial variation in livestock stocking rate in Kenya, late 1970s to late 1990s

10.5 Beneficiary of Takaful insurance payout in Wajir, northern Kenya

10.6 Distribution of lands with coefficient of variation of annual rainfall higher and lower than 33%

10.7 Change in length of growing season across Sub-Saharan Africa

10.8 Game farming business operation in Eastern Cape, South Africa

11.1 The basic production unit of sub-Saharan fishers

11.2 Map of the fish-based farming subsystems

11.3 Map of the fish-based farming system in sub-Saharan Africa

11.4 Coral reef fishing operation using traditional baskets that are set close inshore, Tanga, Tanzania

11.5 High density of reef fishes in Mafia Island Marine Park, Tanzania

11.6 The settlement of Guet N’dar in the Senegal River Delta

11.7 Migrating Bozo fishers in the Faguibine system in Mali

11.8 Floodplain farming in Rufiji, Tanzania

11.9 Harvesting of tidal rice in the Tana Delta, Kenya

11.10 Migrating (often transnational) groups of fishers funded by city-based investors

11.11 Fishing a seasonal pond in proximity to the floodplain farm in Rufiji, Tanzania

11.12 Collective fisheries in the floodplain of the Niger River in Guinea
12.1 The forest-based farming system in Africa 395
12.2 Bush or early succession clearing 395
12.3 Farmer planting small seeded crops (maize, groundnut) where little woody residue is left 397
12.4 A simplified illustration of the fallow-crop dynamic for two major FBFS phases, southern Cameroon 398
12.5 A rain shelter in forest south of Kikwit in Bandundu province, DRC 399
12.6 Satellite image of the IITA forest margins benchmark area in southern Cameroon 400
12.7 Ongoing clearing along a road at Yamgambi, Province Orientale, DRC 401
12.8 Production of cassava, maize, paddy rice and cocoa bean crops in Cameroon, Republic of Congo, Equatorial Guinea and DRC 408
12.9 Scenarios in the hypothetical relationship between fallow length and soil fertility 409
12.10 Initial cropping of plantain after forest removal 413
12.11 A new field of maize in southern Cameroon 416
13.1 Markala dam, large-scale irrigation infrastructure, Office du Niger 425
13.2 Distribution of large-scale irrigated farming system in Africa 427
13.3 Irrigated rice farming, Karfiguela irrigation scheme, Burkina Faso 431
13.4 Small-scale irrigation, East Dangbe district, Ghana 440
13.5 Oxen ploughing, Karfiguela irrigation scheme, Burkina Faso 442
14.1 Map of the arid pastoral and oasis farming system in Africa 452
14.2 Cereal cropping in oasis depressions of Goudoumaria, Niger 453
14.3 Map of trans-Saharan routes and oases 453
14.4 Activities and interactions in the arid pastoral and oasis farming system, Kawar oasis, Niger 455
14.5 Salt water pool in the oasis of Argui in Kawar, Niger 458
14.6 Map of oases in Bilma department, Niger 458
14.7 Oasis irrigation system, Niger 459
14.8 Large Saharan depression threatened by sand accumulation 464
15.1 Map of the mixed perennial farming system and its three subsystems 484
15.2 Sugarcane fields at different development stages, KwaZulu-Natal, South Africa 486
15.3 Aerial view of deciduous fruit orchards, Koue Bokkeveld area of Ceres district, South Africa 487
15.4 Wine grape vineyard under drip irrigation in Stellenbosch district, South Africa 489
15.5 Traditional medium-density olive-based agroecosystem in Agourai, Meknès Province in Morocco 490
15.6 Harvesting of apples in the Elgin district, South Africa 491
15.7 Young trees bearing Golden Delicious apples, Koue Bokkeveld area of Ceres district, South Africa 495
16.1 Open-space rainfed farming system in Kampala, Uganda 508
16.2 Open space irrigated crop production, Addis Ababa 509
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3</td>
<td>Sylvia Oluch’s backyard crop-livestock farm</td>
<td>511</td>
</tr>
<tr>
<td>16.4</td>
<td>Ruth Wanyoike weeding vegetables irrigated using wastewater, Kahawa Soweto, Nairobi, Kenya</td>
<td>518</td>
</tr>
<tr>
<td>16.5</td>
<td>Open space irrigated farming in downtown Kampala, Uganda</td>
<td>521</td>
</tr>
<tr>
<td>16.6</td>
<td>Open space irrigated crop production in Cape Town, South Africa</td>
<td>524</td>
</tr>
<tr>
<td>18.1</td>
<td>Farming systems of Africa in 2000 and 2015</td>
<td>566</td>
</tr>
<tr>
<td>18.2</td>
<td>Ethiopian farming systems, 2015</td>
<td>570</td>
</tr>
</tbody>
</table>
Tables

1.1 Food security, economic and demographic characteristics by development region
1.2 Dietary energy and protein availability by food group
1.3 Sources of dietary energy and protein by agricultural commodities
1.4 Key characteristics of African farming systems
1.5 Principal drivers and trends in farming system development
1.6 Trends in population and food security in sub-Saharan Africa compared with the world
1.7 Trends in land use in Africa
1.8 Trends in livestock and poultry populations in sub-Saharan Africa
1.9 Trends in livestock and poultry productivity in Africa and globally
1.10 Examples of strategic interventions focused on household pathways
2.1 Evolution of the farming systems approach
2.2 Access to agricultural services for African farming systems
2.3 Key characteristics of 2015 African farming systems
2.4 Data source and estimation methods for basic farming system data tables
2.5 Major data sources consulted for system characterization
2.6 Selected major supporting documents, administrative statistics and assessment reports
2.7 Selected list of spatial data reviewed and experts consulted for system characterization in addition to chapter authors
3.1 Basic system data (2015): maize mixed farming system
3.2 Average farm household enterprise pattern: maize mixed farming system
3.3 Key characteristics of the subsystems
3.4 Productivities and yield gaps of major crops
3.5 Main crop expansion and productivity growth rates
3.6 Relative importance of household livelihood improvement strategies
3.7 Adoption of sustainable intensification practices
3.8 Summary of strategic priorities for the maize mixed system
4.1 Basic system data (2015): agropastoral farming system in Africa
4.2 Hausa household socioeconomic groups in Tessaoua department, Niger 111
4.3 Basic characteristics of agropastoral subsystems, 2015 115
4.4 Summary of trends and drivers in the agropastoral farming system 118
4.5 Relative importance of household livelihood improvement strategies 135
4.6 Summary of strategic interventions for the agropastoral farming system 136
5.1 Basic system data (2015): highland perennial farming system 151
5.2 Hectares of arable land per person in agriculture (ten-year average) in selected countries 152
5.3 Arable land per person in the six highland perennial subsystems (ha/person) 153
5.4 Changes in grazing systems for smallholder dairy production, 1977–1996, Kiambu district, Kenyan highlands 154
5.5 Farm size distribution in the Ethiopian highlands by region, 2011–2012 156
5.6 Market-driven intensification pathways in highland perennial farming subsystems 163
5.7 Farm income based on surveys in Kenya, Uganda and Ethiopia, 2004–2006 164
5.8 Comparison of diversification in central and western highlands of Kenya 166
5.9 Farm-market price spreads for maize in Kenya and Uganda 168
5.10 Relative importance of household livelihood improvement in the highland perennial subsystems 176
5.11 Relative importance of household livelihood improvement strategies 177
6.1 Basic system data (2015): root and tuber crop farming system 184
6.2 Key characteristics of the root and tuber crop farming subsystems 195
6.3 Summary of trends and drivers in the root and tuber crop farming system 201
6.4 Production and harvested area of major crops in the root and tuber crop farming system 202
6.5 Common system performance indicators: root and tuber crop farming system 203
6.6 Relative importance of poverty escape strategies for poor and non-poor farm households 204
6.7 Summary of strategic interventions for the root and tuber crop farming system 209
7.1 Basic system data (2015): cereal-root crop mixed farming system 217
7.2 Farming system features at the household level 226
7.3 Relative importance of household livelihood improvement strategies 243
8.1 Basic system data (2015): highland mixed farming system 251
8.2 Key drivers of change, trends and implications for highland mixed farming system 260
8.3 Average yield of key cereal and legume species grown in highland mixed farming system in Ethiopia
8.4 Qualitative comparison of highland mixed subsystems’ performance
8.5 Common performance indicators: highland mixed farming system
8.6 Relative importance of household livelihood improvement strategies
9.1 Basic system data (2015): tree crop farming system
9.2 Urban and rural population size, population growth rates, rural density estimates in tree crop farming system regions
9.3 Demographic characteristics of household heads in the cocoa-based forest rent subsystem
9.4 Average land and labour endowments of cocoa-based forest rent subsystems
9.5 Adoption of improved versus unimproved cocoa planting material in cocoa-based forest rent subsystems
9.6 Percentage of producers using agrochemicals on cocoa and food production systems in the cocoa-based forest rent farming system
9.7 Frequency of tool ownership among FRS households by size of cocoa planting
9.8 Frequency of chemical innovation by size of cocoa holding in the western region of Ghana, 2011
9.9 Intensity of fertilizer application as a linear function of farm size in the cocoa SIS
9.10 Population densities of the three principal farming systems of the humid low land tropics in 2010
9.11 Land ownership by mode of acquisition and gender, cocoa belt of west and central Africa
9.12 Costs and returns per hectare for cocoa FRS and SIS enterprises based on 2009 prices
9.13 Partial productivity measures for cocoa producers across west Africa
9.14 Relative importance of household livelihood improvement strategies
10.1 Basic system data (2015): pastoral farming system
10.2 Key features of pastoral management systems in sub-Saharan Africa
10.3 Population growth rate in the pastoral farming system for various groups
10.4 Human populations and incomes by livestock holdings per capita for northern and southern Kenyan pastoral areas
10.5 Performance of pastoral farming subsystems in terms of productivity, sustainability and human development outcomes
10.6 Productivity of cattle, goats and sheep (shoats) and dairy in the pastoral system in eastern Africa
10.7 Relative importance of household livelihood improvement strategies
10.8 Relative importance of five poverty escape pathways in the pastoral system
10.9 Summary of the strategic priorities for agricultural transformation in the pastoral farming system 346
11.1 Basic system data (2015): fish-based farming system 359
11.2 Main African river basins and their floodplain systems with an estimate of their extent in km² 366
11.3 Summary of drivers, trends and implications for the fish-based farming system 379
11.4 Strategic priorities for the fish-based farming system 382
11.5 Relative importance of household livelihood improvement strategies 384
12.1 Basic system data (2015): forest-based farming system 394
12.2 Percentage of population earning less than US$1.25 and US$2.00 per day 399
12.3 Characteristics of the two subsystems of the FBFS 402
12.4 Total and relative production of major crops in the FBFS, and the range of yields 407
12.5 Relative importance of household livelihood improvement strategies 411
13.1 A typology of irrigated farming subsystems in sub-Saharan Africa based on management and command area 425
13.2 Basic system data (2015): large-scale irrigated farming system 427
13.3 Evolution of the large-scale irrigated farming system (LSIFS) in response to various drivers 435
13.4 Yields and returns in large-scale rice irrigation schemes in five sub-Saharan African countries 436
13.5 Relative importance of household livelihood improvement strategies in sub-Saharan Africa 442
13.6 Summary of strategic interventions for LSIFS 445
14.1 Basic system data (2015): arid pastoral and oasis farming system 454
14.2 Relative importance of household livelihood improvement strategies 469
14.3 Summary of strategic interventions for the arid pastoral and oasis farming system 475
14.4 Intervention strategies according to the characteristics of selected arid pastoral and oasis sites 476
15.1 Basic system data (2015): perennial mixed farming system 485
15.2 Relative importance of household livelihood improvement strategies 496
15.3 Basic system data (2015): island farming system 499
15.4 Relative importance of household livelihood improvement strategies 500
16.1 Proportion of households engaged in UPA in some African towns and cities 506
16.2 Structure and characteristics of UPUFS subsystems 508
16.3 Drivers of farming system evolution 517
16.4 Overall performance of UPUFS system and subsystems 517
16.5 Area of irrigated open space in selected cities of west Africa 519
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>Potential and relative importance of UPUFS for poverty reduction</td>
<td>523</td>
</tr>
<tr>
<td>16.7</td>
<td>Relative importance of household livelihood improvement strategies</td>
<td>523</td>
</tr>
<tr>
<td>16.8</td>
<td>Summary of interventions for urban and peri-urban farming system</td>
<td>528</td>
</tr>
<tr>
<td>17.1</td>
<td>Summary characteristics of farm households by farming systems, 2015</td>
<td>537</td>
</tr>
<tr>
<td>17.2</td>
<td>Distribution of people, land, livestock and cultivated area across African farming systems, 2015</td>
<td>540</td>
</tr>
<tr>
<td>17.3</td>
<td>Characterization of African farming systems by access to resources and agricultural services</td>
<td>542</td>
</tr>
<tr>
<td>17.4</td>
<td>Grouping of African farming systems by type of leading enterprise</td>
<td>543</td>
</tr>
<tr>
<td>17.5</td>
<td>Grouping of African farming systems into categories by food security potential by 2030</td>
<td>544</td>
</tr>
<tr>
<td>17.6</td>
<td>Relative importance of household strategies by farming system for escape from extreme poverty, 2015</td>
<td>552</td>
</tr>
<tr>
<td>17.7</td>
<td>Relative importance of pathways for poverty escape by food security potential for poor households, 2015</td>
<td>554</td>
</tr>
<tr>
<td>17.8</td>
<td>Pressure on resources categorized by farming system food security potential</td>
<td>559</td>
</tr>
<tr>
<td>18.1</td>
<td>Distribution of selected adapted crops by farming systems</td>
<td>571</td>
</tr>
<tr>
<td>18.2</td>
<td>Common farm household strategies for poor and less-poor by food security potential</td>
<td>572</td>
</tr>
<tr>
<td>18.3</td>
<td>Key thrusts and elements of national and regional strategies for food and nutrition security</td>
<td>573</td>
</tr>
</tbody>
</table>
Boxes

1.1 Definition of a farming system 10
3.1 Typical smallholder farm household profile 73
3.2 The law of unintended consequences in policy 86
3.3 The Malawi universal starter pack 93
3.4 Seed supply systems 97
4.1 A typical household in semi-arid Zimbabwe 117
4.2 Main factors generating feelings of disenfranchisement among Sahelian youth 120
4.3 Second-generation research-extension issues in sorghum technology introduction in Mali 126
4.4 An integrated market-oriented approach to scaling up intensive sorghum and millet production 140
6.1 A typical household of the forest-savannah transitional zone of the root and tuber crop farming system, Ghana 191
6.2 A typical household of the root and tuber crop farming system in south-eastern Nigeria 192
6.3 Improving access to market 208
7.1 Intercropping and plant phenology 219
7.2 Crop-livestock integration and village enterprises 230
8.1 A typical household in the livestock-cereal subsystem in the northern Ethiopian highlands 254
8.2 A typical household in the wheat-pulse subsystem in the northern Ethiopian highlands 256
8.3 A typical household in the highland maize-based subsystem in the central Ethiopian highlands 259
8.4 Farm intensification through facilitating organic honey production in livestock-cereal subsystem 271
9.1 Ethnicity, migrant labour and farm size in the cocoa belt of Côte d’Ivoire 293
10.1 Transhumance in the Sahel 321
10.2 A pastoral household in Masaailand 323
10.3 A Fulani household in the Sahel 325
10.4 Population growth as a driver of change 327
10.5 Land use as a driver of change in the Sahel 332
10.6 Community conservancies as innovations for land and wildlife management in Kenya and Namibia 336
11.1 Typical smallholder farm household profile in the fish-based farming system 358
11.2 Just add water: recession agriculture of Lake Faguibine in Mali 369
11.3 The restoration of the Senegal River Delta in Mauritania: a success story 374
11.4 A laudable attempt at regional integration and bottom-up planning in West Africa 386
13.1 A typical household in large-scale irrigated farming system 426
13.2 Challenges and emerging opportunities in the Gezira LSIFS 428
14.1 The Kawar oasis in the heart of the Nigerien Sahara 457
14.2 A typical household in the oasis component of the farming system 460
14.3 Livestock management in the oasis and surrounding arid pastoral plateaux in the Kawar oasis 461
16.1 A household typical of the UPUFS backyard subsystem 511
16.2 A household typical of the UPUFS open space subsystem (high density slum) 512
16.3 Key challenge 512
16.4 Potential for improved performance through managing municipal nutrient flows 520
16.5 Support for urban farming in West African cities 526
16.6 Extension for urban farmers: Nairobi and Environ Food Security, Agriculture and Livestock Forum (NEFSALF) 526
18.1 Engines of agricultural development in Africa: maize mixed and cereal-root crop mixed farming systems 577
18.2 Micro and small enterprises 578
18.3 Innovation platforms 581
18.4 Distributed bioenergy and renewables production 583
18.5 Sustainable and resilient intensification 584
18.6 Targeting climate-smart agriculture 585
Contributors

A. Lead and contributing authors (chapter lead authors underlined)

Samuel Adjei-Nsiah, Country Coordinator, N2Africa Ghana, International Institute of Tropical Agriculture, Tamale, Ghana; Malachy Akoroda, Agronomist, Director General, Cocoa Research Institute of Nigeria, Ibadan, Nigeria; Tilahun Amede, Principal Scientist, International Crops Research Institute for Semi-arid Tropics, Nairobi, Kenya; Godwin Asumugha, Agricultural Economist, National Root Crops Research Institute, Umudike, Nigeria; Christopher M. Auricht, Spatial data analyst, Auricht Projects, Brighton, South Australia; Augustine Ayantunde, Animal Scientist, People Livestock Environment, International Livestock Research Institute, Niamey, Niger; Minamba Bagayoko, Science du Sol et Nutrition des plantes, Gestion des Ressources Naturelles, Directeur de Recherche, Coordinateur du Centre National de Spécialisation sur le Riz, Institut d’Economie Rurale, Mali; Malcolm Blackie, Agricultural Economist, BT Associates, UK; Jean-Marc Boffa, Director, Terra Sana Projects and Associate Fellow, World Agroforestry Centre, Nairobi, Kenya; Bernard Bonnet, Department Head, Institut de Recherches et d’Applications des Méthodes de Développement, Montpellier, France; Martin Bwalya, Head of Comprehensive Africa Agriculture Development Programme under the New Partnership for Africa’s Development Planning and Coordinating Agency, Johannesburg, South Africa; Mahamadou Chaibou, Maître de Conférences, Faculté d’Agronomie, Université Abdou Moumouni, Niamey, Niger; Olufunke Cofie, Senior Researcher, International Water Management Institute, Accra, Ghana; John Dixon, Principal Adviser, Research & Research Program Manager, Cropping Systems and Economics, Australian Centre for International Agricultural Research, Canberra, Australia; Sikhalazo Dube, Regional Representative to Southern Africa, International Livestock Research Institute, Harare, Zimbabwe; Stéphanie Duvail, Geographer, Institut de Recherche pour le Développement, Nairobi, Kenya; Adama Ekberg Coulibaly, Chief, Agriculture, Food security and Land Section, Regional Integration and Trade Division, United Nations Economic Commission for Africa, Addis Ababa, Ethiopia; Medhat El-Helepi, Economic Affairs Officer, Food Security, Agriculture and Land Section, Regional Integration and Trade Division, United Nations Economic Commission for Africa, Addis Ababa, Ethiopia; Polly Ericksen, Programme Leader, Livestock Systems and Environment, International Livestock Research Institute, Nairobi, Kenya; Jean-Marc Faurès, Senior Officer, Water Resources Management, Land and Water Management Division, Food and Agriculture Organization, Rome, Italy; Günther Fischer, Senior Research Scholar, Water Research Program, International Institute for Applied Systems
Contributors

Valentina Robiglio, Landscape Ecologist, World Agroforestry Centre, Lima, Peru; Joseph Rusike, Economist, International Institute of Tropical Agriculture, Dar-es Salam, Tanzania; Mohammed Said, Associate, Institute of Climate Change and Adaptation, University of Nairobi, Nairobi, Kenya; John Sanders, Professeur, Agricultural Economics, Purdue University, West Lafayette, Indiana, USA; Sieglinde Snapp, Professor, Soils and Cropping Systems Ecologist, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA; Katherine Snyder, Senior Social Scientist, Policy, Institutions and Gender, International Center for Tropical Agriculture, Nairobi, Kenya; Sibiri Jean-Baptiste Taonda, Maître de Recherche en Sciences agronomiques (CAMES), Coordonnateur du Projet SAPEP-Burkina, Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de l’Innovation, Ouagadougou, Burkina Faso; Philip Thornton, Principal Scientist, International Livestock Research Institute, Edinburg, UK; Eric Tollens, Emeritus Professor, Centre for Bio-Economics, Faculty of Bioscience Engineering, Catholic University of Leuven, Leuven, Belgium; René van Veenhuizen, Senior Programme Officer Urban Agriculture, RUAF Foundation, Leusden, The Netherlands; Harrij van Velthuizen, Senior Research Scholar, Water Research Program, International Institute for Applied Systems Analysis, Laxenburg, Austria; Anton Vrielings, Assistant Professor, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.

B. Chapter reviewers

Bruno Barbier, Research Fellow, G-eau Research Unit, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Dakar, Senegal; Paula Bramel, Scientific Advisor, Global Crop Diversity Trust, Bonn, Germany; Jonathan Davies, Coordinator, Global Drylands Programme, International Union for Conservation of Nature, Nairobi, Kenya; Hubert de Bon, Agronomist, HortSys Research Unit, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France; Ousmane Djibo, team leader GIZ Sector Project Agriculture Policy and Food security; Pay Drechsel, Theme Leader, International Water Management Institute, Colombo, Sri Lanka; Dominique Endamana, Program Officer, Regional Forest Program for Central and West Africa, International Union for Conservation of Nature, Yaoundé, Cameroon; Divine Foundjem-Tita, Market Scientist, World Agroforestry Centre, Yaounde, Cameroon; Francis Gichuki, Senior Lecturer, Environmental and Biosystems Engineering Department, University of Nairobi, Nairobi, Kenya; Ken E. Giller, Professor of Plant Production Systems, Wageningen University, Wageningen, The Netherlands; Munir A. Hanjra, Economist, Agricultural Water Management, International Water Management Institute, Pretoria, South Africa; Wolf D. Hartmann, Coordinator, GOPA Consultants/Ministerio do Meio Ambiente, Brasilia, Brazil; Heike Höfler, team leader GIZ Sector Project Agricultural Trade, Agribusiness, Agricultural Finance; Irene Hoffmann, Secretary, Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, Italy; Habtemariam Kassa, Senior Scientist, Forests and Human Well-Being Research Team, Center for International Forestry Research, Addis Ababa, Ethiopia; Patrice Levang, Director of Research, Institut de Recherche pour le Développement, Montpellier, France; Thilak Mallawaarachchi, Principal
Contributors

Research Fellow, Risk and Sustainable Management Group, School of Economics, University of Queensland, Brisbane, Australia; Modesta Medard Ntara, Senior Social Scientist and Environmentalist, Tanzania Fisheries Research Institute, Mwanza, Tanzania; Mick S. Mwala, Dean, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia; Lucien Nomo Bidzanga, Coordonnateur, Systèmes de Production, Economie et Sociologie Rurales, Institut de Recherche Agricole pour le Développement, N’Kolbisson, Cameroon; Remi Nomo-Womdim, Representative in Cabo Verde, Food and Agriculture Organization, Praia, Cabo Verde; Pheneas Ntawuruhunga, Scientist, Cassava Breeder, International Institute of Tropical Agriculture, Lusaka, Zambia; Thomas Ochuodho, Assistant Professor, University of Kentucky, Lexington, USA; Michael Phillips, Director of Aquaculture and Fisheries Science, WorldFish, Penang, Malaysia; Mark Prein, team leader GIZ Sector Project Sustainable Fisheries and Aquaculture; Ingrid Prem, team leader GIZ Sector Project Sustainable Agriculture; Mongi Sghaier, Professor, Arid Region Institute, Medenine, Tunisia; Anneke Trux, team leader GIZ Global Program Land; Bernard Vanlauwe, R4D Director, International Institute of Tropical Agriculture, Central Africa, Nairobi, Kenya; Jean-Philippe Venot, Senior Researcher, Institut de Recherche pour le Développement, Montpellier, France; Ketema Tilahun Zekeke, Lecturer, Irrigation and Water Management, Charles Sturt University, Wagga Wagga, Australia.

C. Whole manuscript reviewers

Tsedeke Abate, Drought Tolerant Maize for Africa Project Leader, International Maize and Wheat Improvement Center, Nairobi, Kenya; Caterina Batello, Team Leader, Agriculture Department, Food and Agriculture Organization; Simeon Ehui, Practice Manager, Agriculture Global Practice, The World Bank; Siboniso Moyo, Representative of the Director General to Ethiopia, and Program Leader, Animal Science for Sustainable Productivity, International Livestock Research Institute, Addis Ababa, Ethiopia; Ravi Prabhu, Deputy Director General Research, World Agroforestry Centre, Nairobi, Kenya; Mandivamba Rukuni, Director BEAT Doctoral Academy, Harare, Zimbabwe; Fergus Sinclair, Science Domain Leader, World Agroforestry Centre, Nairobi, Kenya.

D. Participants at design and review workshops

Third Review Workshop: Expert Group Meeting on Farming Systems in Africa convened by UNECA at ICRAF, Nairobi, Kenya

The 23 participants included many chapter authors and book editors, and in addition: Ahmed Abdelwhab M. Abdelhafez, Associate Professor, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Ayma Farid Abou-Hadid, Professor Emeritus, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Nassirou Ba, Economic Affairs Officer, Food Security, Agriculture and Land Section, Regional Integration and Trade Division, United Nations Economic Commission for Africa, Addis Ababa, Ethiopia; James Hansen, Flagship 2 Leader, CGIAR Research Program on Climate Change, Agriculture and Food Security, Columbia University, New York, USA; Kirigai Kamau, Agribusiness & Private Sector Advisor, Ministry of Agriculture Livestock, and Fisheries, Nairobi, Kenya; Stephen Karingi, Director,

Second Design Workshop for the Farming Systems Book, ICRAF, Nairobi, Kenya

The 33 participants included many chapter authors and book editors, and in addition: **Carlo Azzarri**, Senior Research Fellow, IFPRI; **Martin Bwalya**, Advisory Group, NEPAD; **Steve Franzel**, Advisory group member, ICRAF, Nairobi, Kenya; **Zhe Guo**, GIS Coordinator, IFPRI, Washington, DC, USA; **Rosemary Kande**, IT Specialist, ICRAF, Nairobi, Kenya; **Sid Mohan**, Intern, ICRAF, Nairobi, Kenya; **Alice Muller**, Intern, ICRAF, Nairobi, Kenya; **Frank Place**, IFPRI, Washington, DC, USA; **Martin Shem**, Advisory Group Member, Rwanda Agricultural Board, Kigali, Rwanda; **Stan Wood**, Senior Program Officer, Agricultural Development Program, Bill and Melinda Gates Foundation, Seattle, USA.

First Design Workshop for the Farming Systems Book, ICRAF, Nairobi, Kenya

The 22 participants included many chapter authors and book editors, and in addition: **Ermias Aynekulu**, Spatial Data Analyst, ICRAF, Nairobi, Kenya; **Steve Franzel**, Advisory group member, ICRAF, Nairobi, Kenya; **Rosemary Kande**, IT Specialist, ICRAF, Nairobi, Kenya; **Sid Mohan**, Intern, ICRAF, Nairobi, Kenya; **Martin Shem**, Advisory Group Member, Rwanda Agricultural Board, Kigali, Rwanda; **Marleen Schoemaker**, Intern, ICRAF, Nairobi, Kenya; **Stan Wood**, Senior Program Officer, Agricultural Development Program, Bill and Melinda Gates Foundation, Seattle, USA.

E. Other contributors

Other experts consulted for system characterization, trends and interventions:

Economic growth in Africa accelerated in the new millennium, enhancing confidence in the continent’s future. Positive developments have taken place in the liberalization of trade and markets, in the strengthening of institutions and policies, and in investments in human and social capital and infrastructure. However, the growth has not trickled down to the large number of rural people experiencing chronic or crisis-driven hunger and poverty. Thus, Africa has had a larger proportion of extreme poor than any other region of the world.

Most of Africa’s poor are rural and most rely largely on crops, livestock, trees and fish – along with off-farm income – for their livelihoods. The improvement of agriculture, particularly smallholder farming systems, is fundamental to overcoming the problems of rural poverty and lagging rural economies. The African rural development context is unique and diverse, in its geography, agro-ecology, history, politics and culture. National and regional decision makers face the challenge of identifying the best agricultural and rural development opportunities with the greatest impact on food security, livelihoods and economic growth. Experience has shown that policy and investment decisions must be better grounded in local context-specific analyses, incorporating multi-stakeholder and systems approaches focused on the livelihood strategies and opportunities of farm men and women. The value of targeting technologies and policies to different farming systems has been recognized in the Science Agenda of the Forum for Agricultural Research in Africa (FARA).

At the opening of the new millennium an FAO/World Bank analysis was published that examined rural development opportunities over the period from 2000 to 2015 from the perspective of farm households in major farming systems of the developing world (Dixon et al. 2001; www.fao.org/farmingsystems/). The analysis classified and mapped farming systems, including those of Africa, examined the drivers of change for the 2000–2015 period and identified strategic priorities for each system. This farming system framework and analysis has proved to be valuable for targeting and prioritizing agricultural research and development initiatives and has been used repeatedly – for example, by the InterAcademy Council report on Africa, the Millennium Villages Project, the CGIAR Collaborative Research Programs, and others.

Given the major changes in African agricultural opportunities, it was time for an update of the 2000 FAO/World Bank analysis of African farming systems looking forward from 2015 to 2030. Since 2000 the African population has increased by a third, dynamism has returned to many African economies and regional agricultural research and development organizations have generated and disseminated many new varieties
and practices – but farm household vulnerability and international market volatility have increased. The Australian Centre for International Agricultural Research supported an update, with assistance and guidance from the New Partnership for Africa’s Development, the United Nations Economic Commission for Africa, the CGIAR, the World Bank, and the Food and Agricultural Organization.

The work was coordinated by the World Agroforestry Centre (ICRAF) in Nairobi. More than 60 scientists and development professionals, working in multi-disciplinary teams, assessed constraints, trends and strategic interventions in the 15 major farming systems across the continent. The analysis integrated key recent strategic reports and a wealth of expert knowledge and spatial data – including natural resource, production, infrastructural and nutritional information from FAO, World Bank, CGIAR, International Institute for Applied Systems Analysis (IIASA) and other sources.

The resulting book provides a unique systematic, forward-looking, compendium of continent-wide farming system assessments and databases for agribusiness, policy makers and science leaders. The document will undoubtedly be a fundamental guide for years to come for prioritization and targeting of public and private investments to deliver food and nutrition security and rural transformation in Africa.

Maria-Helena Semedo
Deputy Director General
Natural Resources Management and Environment Department
Food and Agriculture Organization of the United Nations

Juergen Voegele
Senior Director
Agriculture Global Practice
The World Bank

Anthony Simons
Director General
World Agroforestry Centre

Andrew Campbell
Chief Executive Officer
Australian Centre for International Agricultural Research

Vera Songwe
Executive Secretary
United Nations Economic Commission for Africa

Ibrahim Assane Mayaki
Chief Executive Officer
New Partnership for Africa’s Development
Acknowledgements

Sixty-six authors, working in multi-disciplinary analysis and writing teams, created the heart of this book. The authors, listed under Contributors, brought to the farming systems analysis the knowledge and data of a great many organizations, including African regional organizations, National Agricultural Research Systems and Universities, as well as several UN agencies, advanced research institutes and the Consultative Group for International Agricultural Research.

The motivation and conceptualization for this farming systems analysis was provided by John Dixon, Australian Centre for International Agricultural Research (ACIAR) and Dennis Garrity, World Agroforestry Centre (ICRAF) who set out to update and deepen the FAO/World Bank global analysis of farming systems in the book *Farming Systems and Poverty* (Dixon et al. 2001). Overall responsibility for technical contents and editing was shared by John Dixon (ACIAR), Jean-Marc Boffa and Dennis Garrity, (ICRAF); with major contributions from Timothy O. Williams, International Water Management Institute (IWMI), Tilahun Amede, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and George Mburathi, formerly of Food and Agriculture Organization (FAO). Book development was coordinated by Jean-Marc Boffa (ICRAF) in consultation with John Dixon (ACIAR). Chris Auricht led the spatial data analysis, and Rosemary Lott led structural editing and copyediting.

The strategic guidance of an advisory committee composed of Martin Bwalya (NEPAD-AU); Martin Shem, Rwanda Agricultural Board (RAB); George Mburathi, John Lynam and Steve Franzel (ICRAF); Maxwell Mudhara (University of KwaZulu); John Dixon (ACIAR); and Dennis Garrity (ICRAF) is gratefully acknowledged. We also are indebted to the advice of many other experienced professionals, including Geoffrey Mrema, Duncan Spencer, Adama Ekberg Coulibaly, Rudy Rabbinge, Nick Austin, John Latham, Stanley Wood, HansBinswanger and Prabhu Pingali, to name but a few.

The farming systems analysis integrated spatial data, administrative statistics and expert knowledge. Spatial data layers originate from various institutions including the Food and Agriculture Organization, United Nations, International Institute for Applied Systems Analysis, International Food Policy Research Institute, University of Minnesota, Center for International Earth Science Information Network, ITC/University of Twente Faculty of Geo-information Science and Earth Observation, World Agroforestry Centre, and the Centre for World Food Studies. Administrative statistics and reports were sourced from African Union, New Partnership for Africa’s Development-African Union, United Nations Economic Commission for Africa, Forum for Agricultural Research in Africa, African Development Bank, R&D projects such as Sustainable Intensification of Maize and Legume Systems for Food Security in
Acknowledgements

Eastern and Southern Africa (SIMLESA), and the World Bank, International Fund for Agricultural Development, CGIAR and other international development organizations. We benefited from the knowledge of a large number of individuals who contributed local maps and expert knowledge that helped to characterize and refine the boundaries of the farming system zones (Table 2.7) and to enrich the judgments about key drivers, trends and strategic interventions for each farming system.

Our thanks are also due to the painstaking work and advice from external reviewers. The farming systems book chapters were reviewed by 27 external reviewers and 7 reviewers of the whole manuscript (see list of Contributors). Adama Ekberg Coulibaly (UNECA) provided strategic advice and convened with UNECA support an expert group meeting at ICRAF that yielded review feedback on key farming systems chapters. The valuable comments from all these reviewers are gratefully acknowledged.

Financial support for book development from ACIAR and The World Bank Group is gratefully acknowledged. The assistance and guidance from senior staff of FAO for this update of the 2001 FAO/World Bank Farming Systems and Poverty book – and in particular from John Latham for his assistance in posting the farming systems data to the FAO website – is also appreciated. Finally, we gratefully acknowledge the contributions to book purchases by ACIAR, International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize Agri-food Systems (CRP MAIZE AFS)*, United States Agency for International Development (USAID), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, IWMI-CGIAR Research Program on Water, Land and Environment (WLE), International Institute of Tropical Agriculture (IITA), FAO and African Conservation Tillage Network (ACT-Africa) for targeted distribution to African policy, research and educational organizations.

The Editors

* The CRP MAIZE AFS receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, the UK, the United States and the World Bank.
Abbreviations

Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIAR</td>
<td>Australian Centre for International Agricultural Research</td>
</tr>
<tr>
<td>ADLI</td>
<td>Agriculture Development–Led Industrialization</td>
</tr>
<tr>
<td>ADMARC</td>
<td>Agricultural Development and Marketing Corporation (Malawi)</td>
</tr>
<tr>
<td>AEZ</td>
<td>Agroecological Zone</td>
</tr>
<tr>
<td>AfDB</td>
<td>African Development Bank</td>
</tr>
<tr>
<td>AGRA</td>
<td>Alliance for a Green Revolution in Africa</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>APP</td>
<td>Africa Progress Panel</td>
</tr>
<tr>
<td>ASAL</td>
<td>Arid and Semi-arid Lands</td>
</tr>
<tr>
<td>ASARECA</td>
<td>Association for Strengthening Agricultural Research in Eastern and Central Africa</td>
</tr>
<tr>
<td>ATA</td>
<td>Agricultural Transformation Agency (Ethiopia)</td>
</tr>
<tr>
<td>AU</td>
<td>African Union</td>
</tr>
<tr>
<td>BEAT</td>
<td>Barefoot Education for Afrika Trust (Zimbabwe)</td>
</tr>
<tr>
<td>CA</td>
<td>Conservation Agriculture</td>
</tr>
<tr>
<td>CAADP</td>
<td>Comprehensive Africa Agriculture Development Programme</td>
</tr>
<tr>
<td>CABI</td>
<td>Centre for Agriculture and Bioscience International</td>
</tr>
<tr>
<td>CAMES</td>
<td>Maître de Recherche en Sciences Agronomiques</td>
</tr>
<tr>
<td>CARE</td>
<td>Christian Action Research and Education</td>
</tr>
<tr>
<td>CASI</td>
<td>Conservation Agriculture-based Sustainable Intensification</td>
</tr>
<tr>
<td>CBPP</td>
<td>Contagious bovine pleuropneumonia</td>
</tr>
<tr>
<td>CCARDESA</td>
<td>Centre for Coordination of Agricultural Research and Development for Southern Africa</td>
</tr>
<tr>
<td>CCPP</td>
<td>Contagious caprine pleuropneumonia</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group for International Agricultural Research</td>
</tr>
<tr>
<td>CIAT</td>
<td>International Center for Tropical Agriculture (Centro Internacional de Agricultura Tropical)</td>
</tr>
<tr>
<td>CIESIN</td>
<td>Center for International Earth Science Information Network</td>
</tr>
<tr>
<td>CIFOR</td>
<td>Center for International Forestry Research</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>International Maize and Wheat Improvement Center</td>
</tr>
<tr>
<td>CIRAD</td>
<td>French Agricultural Research Centre for International Development (Centre de Coopération Internationale en Recherche Agronomique pour le Développement)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COMESA</td>
<td>Common Market for Eastern and Southern Africa</td>
</tr>
<tr>
<td>COOPAC</td>
<td>Coopérative pour la Promotion des Activités Café (Rwanda)</td>
</tr>
<tr>
<td>CORAF</td>
<td>Conseil Ouest et Centre Africain pour la Recherche et le Développement Agricole</td>
</tr>
<tr>
<td>CRIG</td>
<td>Cocoa Research Institute of Ghana</td>
</tr>
<tr>
<td>CSA</td>
<td>Climate-smart agriculture</td>
</tr>
<tr>
<td>CTA</td>
<td>Centre Technique de Coopération Agricole et Rurale</td>
</tr>
<tr>
<td>DAP</td>
<td>Di-ammonium Phosphate</td>
</tr>
<tr>
<td>DRC</td>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>DTMA</td>
<td>Drought Tolerant Maize for Africa</td>
</tr>
<tr>
<td>EAC</td>
<td>East African Community</td>
</tr>
<tr>
<td>EAHB</td>
<td>East African Highland Banana</td>
</tr>
<tr>
<td>ECF</td>
<td>East Coast Fever</td>
</tr>
<tr>
<td>EIAR</td>
<td>Ethiopian Institute of Agricultural Research</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>FAO Statistical Databases (United Nations)</td>
</tr>
<tr>
<td>FARA</td>
<td>Forum for Agricultural Research in Africa</td>
</tr>
<tr>
<td>FASID</td>
<td>Foundation for Advanced Studies on International Development</td>
</tr>
<tr>
<td>FBFS</td>
<td>Fish-based farming system</td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign direct investment</td>
</tr>
<tr>
<td>FEWS-NET</td>
<td>Famine Early Warning Systems Network</td>
</tr>
<tr>
<td>FIPS</td>
<td>Farm Input Promotions Africa Ltd</td>
</tr>
<tr>
<td>FMD</td>
<td>Foot and mouth disease</td>
</tr>
<tr>
<td>FMNR</td>
<td>Farmer-Managed Natural Regeneration</td>
</tr>
<tr>
<td>FRS</td>
<td>Forest rent subsystem of the tree crop farming system</td>
</tr>
<tr>
<td>FSA</td>
<td>Farming Systems Approach</td>
</tr>
<tr>
<td>FSR&D</td>
<td>Farming Systems Research and Development</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GET</td>
<td>Geoscience Environment Toulouse</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GHI</td>
<td>Global Hunger Index</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GIZ</td>
<td>German Corporation for International Cooperation</td>
</tr>
<tr>
<td>GNI</td>
<td>Gross National Income</td>
</tr>
<tr>
<td>GWUE</td>
<td>Green Water Use Efficiency</td>
</tr>
<tr>
<td>IAGU</td>
<td>Institut Africain de Gestion Urbaine</td>
</tr>
<tr>
<td>IBLI</td>
<td>Index Based Livestock Insurance</td>
</tr>
<tr>
<td>ICARDA</td>
<td>International Center for Agricultural Research in the Dry Areas</td>
</tr>
<tr>
<td>ICIMOD</td>
<td>International Centre for Integrated Mountain Development</td>
</tr>
<tr>
<td>ICRAF</td>
<td>World Agroforestry Centre</td>
</tr>
<tr>
<td>ICRISAT</td>
<td>International Crops Research Institute for the Semi-Arid Tropics</td>
</tr>
<tr>
<td>ICT</td>
<td>Information Communication Technology</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre</td>
</tr>
<tr>
<td>IFAD</td>
<td>International Fund for Agricultural Development</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IFPRI</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>IGAD</td>
<td>Inter-Governmental Authority on Development</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IITA</td>
<td>International Institute for Tropical Agriculture</td>
</tr>
<tr>
<td>ILRI</td>
<td>International Livestock Research Institute</td>
</tr>
<tr>
<td>IMPACT</td>
<td>International Model for Policy Analysis of Agricultural Commodities and Trade</td>
</tr>
<tr>
<td>INM</td>
<td>Integrated Nutrient Management</td>
</tr>
<tr>
<td>INTSORTMIL</td>
<td>International Sorghum and Millet Collaborative Research Support Program</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest Management</td>
</tr>
<tr>
<td>IPS</td>
<td>Industrial plantation subsystem of the tree crop farming system</td>
</tr>
<tr>
<td>IRD</td>
<td>French National Research Institute for Sustainable Development (Institut de Recherche pour le Développement)</td>
</tr>
<tr>
<td>IRDP</td>
<td>Integrated Rural Development Program</td>
</tr>
<tr>
<td>ISFM</td>
<td>Integrated Soil Fertility Management</td>
</tr>
<tr>
<td>ISRIC</td>
<td>World Soil Information Centre (also International Soil Reference and Information Centre)</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>ITC</td>
<td>Center for International Earth Science Information</td>
</tr>
<tr>
<td>IWAD</td>
<td>Integrated Water and Agricultural Development Ghana Limited</td>
</tr>
<tr>
<td>IWMI</td>
<td>International Water Management Institute</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>KARI</td>
<td>Kenya Agricultural Research Institute</td>
</tr>
<tr>
<td>LER</td>
<td>Land Equivalent Ratio</td>
</tr>
<tr>
<td>LGP</td>
<td>Length of Growing Period</td>
</tr>
<tr>
<td>LSIFS</td>
<td>Large-scale irrigated farming system</td>
</tr>
<tr>
<td>LSLA</td>
<td>Large-scale land acquisition</td>
</tr>
<tr>
<td>MENA</td>
<td>Middle East and North Africa region</td>
</tr>
<tr>
<td>MPA</td>
<td>Marine Protected Area</td>
</tr>
<tr>
<td>M-PESA</td>
<td>M-Pesa (M for mobile, pesa is Swahili for money) is a mobile phone-based money transfer, financing and microfinancing service</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NA</td>
<td>North Africa</td>
</tr>
<tr>
<td>NALEP</td>
<td>National Agriculture and Livestock Extension Program (Kenya)</td>
</tr>
<tr>
<td>NARI</td>
<td>National Agricultural Research Institute</td>
</tr>
<tr>
<td>NARS</td>
<td>National Agricultural Research System</td>
</tr>
<tr>
<td>NEFSALF</td>
<td>Nairobi and Environs Food Security, Agriculture and Livestock Forum</td>
</tr>
<tr>
<td>NEPAD</td>
<td>New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NPK</td>
<td>Nitrogen-Phosphorous-Potassium</td>
</tr>
<tr>
<td>NRCRI</td>
<td>National Root Crops Research Institute (Nigeria)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resource Management</td>
</tr>
<tr>
<td>NTFP</td>
<td>Non-Timber Forest Product</td>
</tr>
<tr>
<td>NUANCES</td>
<td>Nutrient Use in Animal and Cropping systems – Efficiencies and Scales</td>
</tr>
<tr>
<td>NVDI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>ODA</td>
<td>Overseas Development Assistance</td>
</tr>
</tbody>
</table>
Abbreviations

ODI Overseas Development Institute (UK)
OECD Organization for Economic Cooperation and Development
OPV Open Pollinated Variety
P Phosphorous
P/PET Precipitation /Potential Evapotranspiration
PEN Poverty and Environment Network
PPP Public-Private Partnership
PPP Purchasing Power Parity
PPR Pestes des petits ruminants
PRSP Poverty Reduction Strategy Programme
R&D Research and Development
RAB Rwanda Agricultural Board
REDD+ Reducing emissions from deforestation and forest degradation in developing countries
ReSAKSS Regional Strategic Analysis and Knowledge Support System
RinD Research in Development
RNFE Rural Non-Farm Economy
RUAF Resource Centres on Urban Agriculture and Food Security
RUE Rain Use Efficiency
S3A Science Agenda for Agriculture in Africa
SADC Southern Africa Development Community
SAP Structural Adjustment Program
SAPEP Smallholder Agricultural Productivity Enhancement Program (Burkina Faso)
SDG Sustainable Development Goal
SIDS Small Island Developing States
SIMLESA Sustainable Intensification of Maize Legume Cropping Systems for Food Security in Eastern and Southern Africa
SIP Sustainable Intensification Practice
SIS Smallholder intensified subsystem of the tree crop farming system
SLA Sustainable Livelihoods Approach
SNSF Swiss National Science Foundation
SRO Sub-Regional Organization
SSA sub-Saharan Africa
STCP Sustainable Tree Crops Program (West Africa)
TAPRA Tegemeo Agricultural Policy Research and Analysis (Kenya)
TFP Total Factor Productivity
TLU Tropical Livestock Unit
UEMOA West African Economic and Monetary Union
UK United Kingdom
UN United Nations
UNDP United Nations Development Program
UNECFA United Nations Economic Commission for Africa
UPA Urban and peri-urban agriculture
UPUFS Urban and peri-urban farming system
USA United States of America
USAID United States Agency for International Development (USA)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WECARD</td>
<td>West and Central African Council for Agricultural Research and Development</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Program</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WUA</td>
<td>Water Users’ Association</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>

Abbreviations (units)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%, pc</td>
<td>percentage</td>
</tr>
<tr>
<td>BP</td>
<td>before present</td>
</tr>
<tr>
<td>CV, c.v.</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>h, hr</td>
<td>hour</td>
</tr>
<tr>
<td>incl</td>
<td>including</td>
</tr>
<tr>
<td>k</td>
<td>thousand</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>km, km²</td>
<td>kilometre, square kilometre</td>
</tr>
<tr>
<td>mm, m, m³</td>
<td>millimetre, metre, cubic metre</td>
</tr>
<tr>
<td>M (m), Mt</td>
<td>million, million tonne</td>
</tr>
<tr>
<td>MW</td>
<td>megawatt</td>
</tr>
<tr>
<td>pa</td>
<td>per annum</td>
</tr>
<tr>
<td>pc, per capita</td>
<td>per person</td>
</tr>
<tr>
<td>pop</td>
<td>population</td>
</tr>
<tr>
<td>USD, US$</td>
<td>US dollar</td>
</tr>
</tbody>
</table>
Part I

Introduction
1 Africa through the farming systems lens

Context and approach

John Dixon, Dennis Garrity, Jean-Marc Boffa, Adama Ekberg Coulibaly, Medhat El-Helepi, Christopher M. Auricht and George Mburathi

Key messages

- The African continent is at a turning point, moving from unfulfilled development potential towards sustainable agricultural intensification, which must accompany and drive economic growth to alleviate poverty and improve food security.
- African agriculture is heterogeneous and dynamic. Investing in sustainable agricultural intensification requires a framework to differentiate and target different investments responsive to the needs of different farming system. Each of the 15 broad farming systems in Africa comprises millions of farm households with similar livelihood patterns and broadly similar development opportunities.
- Seven drivers operating in various combinations shape the trends and development options for each farm household and the different strategic interventions for each farming system.
- Farming systems analysis can contribute to broad-based transformation and improved food and nutrition security in several ways. Because most food insecure and hungry people reside in rural areas, effective food systems must be based on productive and resilient farming systems that integrate food consumption and production decisions, maintain diverse local diets to reduce malnutrition, yet also facilitate improved production and trading with wider markets.
- Farming system intensification tailored to local resources, crops and livestock will generally increase farm labour productivity and reduce poverty. Rural poverty reduction strategies for job creation, gender empowerment and youth entrepreneurship should reflect different livelihood patterns in each farming system.
- Analysis of farming systems, including forward and backward linkages and value-addition, can focus investments on bundles of commodities, food processing and agribusiness potential, which improve food and nutrition security for consumers and producers.
- Livelihood systems in Africa are highly vulnerable to shocks, including market volatility, climate variability and climate change. Systematic analysis of farming systems can facilitate the identification of policies and investments that target the development of sustainable and resilient farming systems.
Summary

Despite vigorous national economic growth, significant rural poverty and food insecurity persists in many African countries, despite notable national economic development since the late 2000s. About 90 per cent of Africa’s poor live in rural areas and about 80 per cent derive their living from rainfed farming. Improving smallholder agriculture is now seen as fundamental to inclusive sustainable development. The African continent contains a mosaic of natural resources, human settlements and institutions which shape fifteen major farming systems, each with a characteristic mixture of trees, crops, livestock, fish and livelihoods – and particular development pathways. Within each farming system zone, the farm household systems and opportunities are shaped by seven drivers of change, notably population, natural resources and climate, energy, human capital, technologies, markets and policies. To escape poverty and improve food and income security, African farm households follow one or more of a set of strategies including intensification and diversification of production and increased off-farm income.

This book takes a unique farming system perspective on the analysis of the drivers, trends and opportunities for farm households to improve food security or escape from poverty. In this way, the book identifies strategic science, investment and policy interventions, targeted to each farming system. The book updates and deepens the sub-Saharan African (SSA) regional component of the FAO/World Bank 2001 global analysis of farming systems, and it has been carefully structured to complement rather than replace existing sectoral and regional development assessments of the African continent.

This chapter introduces the African agricultural and food security context, the farming system framework, key drivers of change and the fifteen principal farming systems in Africa.

From unfulfilled potential in Africa to sustainable development

The vision of a prosperous rural Africa, with abundant economic opportunities, sustainable use of natural resources, and an end to poverty and hunger, underpins this book.

The roots of the unfulfilled development potential of Africa lie in the stagnation of many African economies and agricultural sectors during the period from the 1970s to the 1990s – sometimes referred to as the ‘lost decades’. Subsequently, most countries have emerged from stagnation and are recording impressive economic growth rates in this new millennium (Badiane and Collins 2016). By 2012, six of the ten fastest growing economies in the world were located in Africa. By 2015 the SSA region recorded a 4.4 per cent growth rate, equivalent to the average growth rate of all low- and middle-income countries. Nevertheless, agricultural sector growth is slow and the agricultural sector share, measured in Gross Domestic Product (GDP) terms, is modest, despite the land resources and agricultural population of Africa. In fact, development planners normally expect agriculture to contribute a greater share of GDP given the prevailing levels of per capita income in Africa.

In order to benefit fully from sustainable development pathways, national economic growth must be complemented by vigorous agricultural and rural development. Agriculture remains the main source of livelihoods for the rural population, which represented approximately half of the African population of nearly 1.2 billion in 2015. In contrast to other regions of the world, African farming (including pastoral, livestock, forestry
and fishing) engages two-thirds of the continent’s labour force and contributes about one-third of regional GDP. Moreover, growth in farm household income generally stimulates substantial rural non-farm economic growth. However, the persistence of widespread food insecurity and rural poverty in Africa, as well as natural resource degradation, was the motivation for the analysis reported in this book.

For maximum effectiveness of agricultural development policies, investment programs and agricultural research, it is necessary to unpack the diversity of African agriculture into distinct, broad farming system zones (hereafter referred to as farming systems) and ascertain priority strategic interventions for each system. For this purpose, the constraints and opportunities are analysed and probable trajectories of development identified. Farm household income, livelihoods and food security are closely related and dependent on the nature of the farming system. The analysis recognizes the patterns of inherent diversity of farm households within any particular farming system zone and the various coping strategies employed by farm households.

This book takes a unique approach to the African drama and subsequent development, applying the farming systems perspective to the identification of priorities for agricultural policy, investment, agribusiness and technology development. The analysis complements, rather than replaces, existing assessments of African agricultural and rural development. While the geographic scope of this book is continental Africa, the emphasis lies on the complex farming systems of SSA. This book updates and deepens the SSA regional analysis of the FAO/World Bank *Farming Systems and Poverty* publication (Dixon et al. 2001). It takes into account the smallholder development successes with maize, cassava, cotton, horticulture and dairy (Abate et al. 2015; Haggblade and Hazell 2010) and the new policy settings resulting from the 2014 Malabo Declaration by African leaders to eradicate hunger by 2025 within the context of a fully transformed agriculture (Malabo Montpellier Panel 2017). The book has been written for policymakers, research leaders and investors who seek to target agricultural policy, investment plans and science priorities for maximum impact in agricultural and rural sectors.

This chapter introduces the farming systems approach used in this book, summarizes the key drivers and trends in agricultural development, and discusses the strategies used by farm households to escape poverty and improve livelihoods. The chapter also contrasts development progress in SSA with other regions, outlines the status of African food and agricultural systems, and classifies African agriculture into fifteen major farming systems. Chapter 2 outlines the methods and data used for the analysis; Chapters 3–16 list the characteristics, trends and priority interventions in each of the fifteen farming systems; and Chapters 17–19 offer a consolidation of findings, summary of ways forward and the main conclusions of the analysis.

Contrasts with other regions

Development indicators for continental Africa are often presented separately for SSA and North Africa, the latter also forming part of the Middle East and North Africa region (MENA). As shown in Table 1.1, the SSA annual economic growth rate was triple the average of MENA in 2014 and 2015, although slower than the growth rates of South Asia and East Asia. Per capita income in SSA, calculated on a purchasing power parity basis, still lags behind other regions. Conversely, per capita income in North Africa in 2014–15 was above average.
Despite the promising economic growth rate, SSA experienced greater food insecurity than developing countries overall. Moreover, about one-quarter of the SSA population were undernourished, compared with 15 per cent across all developing countries. Food and nutrition security is not only a major current challenge for SSA but also a prerequisite for sustained human development.

By poverty measures, SSA also lags behind other regions. In 2015 more than 40 per cent of the SSA population lived in extreme poverty, consuming less than US$1.90 per day. About 90 per cent of African poor live in rural areas, although the number of urban poor is increasing with the growth of cities. Most of the rural poor scratch a living from rainfed farming, often supplemented by off-farm work. Many poor households are also food and nutritionally insecure (and vice versa). Because of extensive poverty, limited wealth is directly reinvested in farming systems. However, given agriculture is the main source of livelihood for two-thirds of African poor, boosting agriculture generally reduces national income inequality and improves food and nutrition security.

It should be noted that there has been considerable development progress in SSA since the turn of the century. The 2015 growth rate was double the growth rate during the early millennium years or the period from the 1970s to the 1990s. The global hunger index (GHI) improved from 44 in 2000 to 32 in 2015. Similarly, per capita incomes had increased and extreme poverty was reduced substantially over the period 2000 to 2015.

With a population of 1.2 billion (compared with a total population of 5.6 billion in low- and middle-income countries globally), Africa faces major development challenges and, at the same time, great opportunities. Urbanization is increasing rapidly and already approximately half the population lives in cities. Overall, the poverty, food and nutrition insecurity and income inequality stand in marked contrast to the richness of the natural resources (mineral and agricultural) and the development potential of farming systems across Africa. Arguably, the region will need more targeted investment and strengthened institutions to achieve food and nutrition security, boost rural economic growth with equity, and to achieve the Sustainable Development Goals.

Table 1.1 Food security, economic and demographic characteristics by development region

<table>
<thead>
<tr>
<th>Item</th>
<th>Sub-Saharan Africa</th>
<th>North Africa and Middle East</th>
<th>South Asia</th>
<th>East Asia#</th>
<th>Developing countries (all)#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global hunger index (GHI)</td>
<td>32</td>
<td>12</td>
<td>29</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>Extreme poverty (%)*</td>
<td>43</td>
<td>3</td>
<td>19</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>GNI/cap ($PPP)**</td>
<td>3,382</td>
<td>11,834</td>
<td>5,299</td>
<td>11,872</td>
<td>8,811</td>
</tr>
<tr>
<td>Economic growth (%)</td>
<td>4.4</td>
<td>1.5</td>
<td>6.9</td>
<td>6.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Total population (million)</td>
<td>973</td>
<td>357</td>
<td>1,721</td>
<td>2,020</td>
<td>5,682</td>
</tr>
<tr>
<td>Population growth rate (%)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: Estimates are rounded. Data are from 2014 or 2015 except poverty estimates which derive from 2012.

*Extreme poverty is based on US$1.90 per capita consumption per day (representing an update of the earlier US$1.25 poverty level).

**Gross national income (GNI) per capita calculated at purchasing power parity.

#East Asia includes the Pacific. The developing countries’ estimates represent all low- and middle-income countries as classified by the World Bank in 2015.
Food and agriculture systems

Food and agricultural systems span the full length of food chains – from agricultural resources and inputs to food production, value chains and consumption. In Africa, food and agricultural systems are diverse and complex. In rural areas, food production and consumption are closely integrated, with many farm households producing much of their own food needs, and in African cities informal backyard and peri-urban food production is common.

Smallholder farm women and men produce a wide variety of food grains, root crops, cash crops and livestock that support diverse food and livelihood systems in different zones. Agricultural exports, including cocoa, coffee and cotton, account for about one-sixth of total exports; meanwhile cereals account for about one-tenth of total imports, albeit increasing for rice, wheat and maize. During the period from 1990 to 2015, the terms of trade for African countries worsened appreciably, which has wider policy implications.

Because food represents a large proportion of expenditure for so many low-income families (including smallholder households), persistent high and volatile food prices constrain their ability to obtain food and nourishment. Further, it also restricts their ability to purchase health, education and other essential goods and services. Malnutrition is strongly correlated with poor dietary diversity and, in farming areas, with low production diversity. Hotspots of food and nutrition insecurity and poverty often occur in areas of high population density, severe land degradation and slow agricultural growth.

The main sources of dietary energy and protein for the African population are summarized in Table 1.2 (data on specific nutrients are limited). In 2010, dietary energy was largely sourced from plants, principally cereals and starchy roots; animal products provided about one-quarter of dietary protein and also many other nutrients. The dominant crop sources were maize, sorghum, millet, cassava and wheat, with rice consumption

<table>
<thead>
<tr>
<th>Food group</th>
<th>Dietary energy (kcal/capita/day)</th>
<th>Dietary protein (g/capita/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant products</td>
<td>2377</td>
<td>52.7</td>
</tr>
<tr>
<td>Animal products</td>
<td>217</td>
<td>16.1</td>
</tr>
<tr>
<td>Total</td>
<td>2594</td>
<td>68.6</td>
</tr>
<tr>
<td>Breakdown by main commodity groups:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals</td>
<td>1288</td>
<td>33.1</td>
</tr>
<tr>
<td>Starchy roots and tubers</td>
<td>329</td>
<td>3.9</td>
</tr>
<tr>
<td>Pulses</td>
<td>106</td>
<td>6.7</td>
</tr>
<tr>
<td>Oil seeds and oils</td>
<td>281</td>
<td>2.8</td>
</tr>
<tr>
<td>Vegetables</td>
<td>47</td>
<td>2.3</td>
</tr>
<tr>
<td>Fruit</td>
<td>106</td>
<td>1.2</td>
</tr>
<tr>
<td>Meat</td>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>Milk</td>
<td>88</td>
<td>4.5</td>
</tr>
<tr>
<td>Fish</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: FAOSTAT (2019).

Notes: Dietary energy and protein data intake are relatively stable over the years – the above data refer to the year 2010 for Africa. The category of cereals excludes use for beer. Pulses exclude groundnuts.
increasing rapidly (Table 1.3). Vegetables and fruit played minor roles in the provision of energy or protein but were important sources of nutrients and minerals. While urban areas consumed significant imports of cereals, rural areas tended to be dependent on local food production.

The averages in Table 1.2 mask the wide variations within Africa in 2010, across regions and population groups. For example, dietary energy ranged from 2136 kcal per capita per day in East Africa to 3140 kcal per capita per day in North Africa; similarly, average protein intake varied from 57 grams per capita per day in East Africa to 92 grams per capita per day in North Africa (equivalent global consumption estimates are 2870 kcal per capita per day and 80 grams per capita per day). As might be expected, dietary energy and protein intakes also vary across different farming systems. Nutritional security, including the consumption of micronutrients, is of growing concern for policymakers. Fortunately, the majority of the rural population benefits from reasonably diverse diets associated with the wide range of food crops and livestock produced on most small African farms.

Through the farming systems lens

Basic concepts

The mosaic of natural resources, climate, institutions, markets and agricultural services across Africa results in diverse land use zones and patterns of farming, referred to in this book as farming systems zones, or simply farming systems. Obviously, agricultural research needs to focus on the issues and opportunities associated with current and future crop, tree and animal production, trade and consumption. Perhaps less obviously, the targeting and impact of many agricultural policies have spatial aspects which differ by agricultural zone. For example, many irrigation policies apply only to large-scale irrigation schemes.

Table 1.3 Sources of dietary energy and protein by agricultural commodities

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Dietary energy (kcal/cap/day)</th>
<th>Dietary protein (g/cap/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>376</td>
<td>9.6</td>
</tr>
<tr>
<td>Rice</td>
<td>227</td>
<td>4.5</td>
</tr>
<tr>
<td>Sorghum</td>
<td>146</td>
<td>4.4</td>
</tr>
<tr>
<td>Millet</td>
<td>99</td>
<td>2.4</td>
</tr>
<tr>
<td>Cassava</td>
<td>149</td>
<td>1.1</td>
</tr>
<tr>
<td>Yams</td>
<td>79</td>
<td>1.3</td>
</tr>
<tr>
<td>Plantains</td>
<td>36</td>
<td>0.3</td>
</tr>
<tr>
<td>Cowpeas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>41</td>
<td>1.8</td>
</tr>
<tr>
<td>Cattle</td>
<td>109</td>
<td>5.9</td>
</tr>
<tr>
<td>Sheep and goats</td>
<td>14</td>
<td>1.1</td>
</tr>
<tr>
<td>Poultry</td>
<td>30</td>
<td>2.9</td>
</tr>
<tr>
<td>Fish</td>
<td>19</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Source: FAOSTAT (2019).

Notes: Dietary energy and protein are indicative, referring to continental Africa. The products of the crop or the animal type (cattle meat and milk, poultry meat and eggs) are included within the respective category. Nevertheless, the listed components represent only a part of the full diets and so add up to less than the total intake.
(often not small-scale irrigation), livestock water point development targets pastoralists, fertilizer policies are relevant to crop farmers, and export levies directly influence only a subset of farmers producing the export product.

At its simplest, a farming system comprises a population of farm households with similar livelihood patterns and similar development constraints and opportunities (see Box 1.1 for further explanation). The farming systems described in this book extend over large landscapes and multiple countries, and typically support tens of millions of inhabitants.

The pattern of farm enterprises and their management practices depend on the farm resource base along with the financial, social and cultural capitals. They are integral components of a farming system. Because family labour is a key resource of farm households, off-farm employment and remittances are included in the concept of the farming system. The farm enterprise patterns and their management are often influenced by local formal and informal institutions (in the sense of the well-established arrangements for management or exchange, for example competitive markets, common property resource regimes). These are also intrinsic aspects of the farming system. Household consumption is also included because, for many farm households in Africa, decisions on farm production and household consumption are interdependent.

Naturally, communities within each farming system comprise different farm household types with contrasting levels of resources, access to services and coping strategies. Distinct patterns of inter-household interaction can be associated with each farming system, for example the high social capital of traditional herders in pastoral areas, which underpins grazing and water point management, contrasts with the economic and social relationships between large commercial farms and smallholders in Southern Africa.

Systems thinking has been applied to agricultural research and development (R&D) planning and policymaking in Africa for nearly a century. The early pioneers included Allan (1965), based on analyses of Southern Africa during the 1920s, and Ruthenberg (1971), who inspired many farming systems researchers in the following decades. Of course, systems research requires a structured approach to analysing complexity (Cabrera and Cabrera 2015) and integrating knowledge from farmers, value chain entrepreneurs and from multiple scientific disciplines. Over nearly five decades of farming systems analyses, applications have gradually expanded the number of analytical variables (Norman 2002), geographic scope and purpose, notably from applied research in communities, to ‘research-for-development’ and now to ‘research-in-development’ at broader scales. Sinclair (2017) conceptualizes how such systems analysis can be applied in order to target, support and monitor impact at scale. A wide variety of methods have been applied, for example household food budgets, nutrient and feed balances, participatory appraisal and evaluation, geospatial analysis, farmer- and community-managed trials, innovation platforms and other multi-stakeholder tools. In order to inform research, extension, planners and policymakers, farming systems analysis can identify constraints and interventions or can identify, classify and characterize different types of farming systems.

In principle, farming system zonation can be undertaken at a number of different scales. Depending on the purpose, the analysis could focus on one or more of the following levels of aggregation: farm household; community (or village) and landscape; country; and region (Dixon et al. 2009). Careful consideration is required in relation to the choice of scale and acceptable levels of heterogeneity. Farming systems analysis can serve many different purposes. For national and regional policymakers and research leaders, the characterization of a modest number of broad farming systems is most useful (Garrity et al. 2017). It is important to identify key drivers and trends which shape the directions
of farming systems development. Each farming system is influenced in different ways by external forces, including predictable long-term trends (e.g. increasing population density), unpredictable variations (e.g. climatic or economic shocks) and development interventions (e.g. projects, new technologies or policy changes).

The 2001 FAO/World Bank analysis of farming systems and poverty (Dixon et al. 2001) focused on resource endowment and ‘services endowment’ (access to services including markets) as primary determinants of farming system patterns. This analysis described eight generic farming system types across the developing world, and seventy-two ‘regional’ farming systems across the six developing regions, including fifteen systems in SSA and eight systems in North Africa. Such analyses of major farming systems provide an important evidence base for agricultural policy and decisionmaking (Bwalya pers. comm.) and enables improved priority setting and accurate targeting of policies and investments. This approach supports the development of more specific policies and spatial planning of rural infrastructure, and it facilitates the monitoring of impact on different farming systems.

The above analysis influenced the update of the World Bank Rural Development Strategy and supported the prioritization and targeting of a number of CGIAR research programs. More generally, the study encouraged systems-oriented R&D projects and loans which integrated various aspects of farming including resource management, crops, trees, livestock and markets (Dixon 2006). In Africa, the study underpinned a number of subsequent assessments of African agriculture, including agricultural research and poverty reduction (Inter Academy Council 2004), and water resources development (Faures and Santini 2008). The framework was incorporated in the Science Agenda of the Forum for Agricultural Research in Africa (FARA) and was applied to support national Comprehensive African Agricultural Development Program (CAADP) agricultural investment planning in Ethiopia and Tanzania.

In this book the analyses of broad farming system zones are informed by an understanding of farm household processes, strategies and responses to the local resource, institutional and policy environment. In addition, interactions across scales are considered, for example the functionality and governance of communities, districts, watersheds, local institutions and value chains. Well-structured and functioning systems create incentives for sustainable resource management, higher productivity and improved food security, underpinning rural transformation and economy-wide growth.

Box 1.1 Definition of a farming system

A farming system is defined as a population of farm households, generally of mixed types and sizes, that as a group have broadly similar patterns of resources, livelihoods, consumption, constraints and opportunities, and for which similar bundles of development strategies and interventions would be appropriate. Often, such systems share broadly similar agroecological and market access conditions. There are inherent patterns of heterogeneity in any particular farming system, for example the interdependence between small and large farms.

Some of the major determinants of spatial differentiation in farming systems are discussed in the next subsection. The temporal differentiation or evolution of farming systems is addressed in the section on drivers and trends.
Differentiating African farming systems

Apart from some large-scale irrigation schemes, African farming systems are dominated by rainfed cropping and pastoralism, with trees and shrubs playing important roles in most areas. In SSA alone, there are nearly 100 million ha of starchy staples (cereals, roots, tubers and plantains), more than 20 million ha of cowpeas and groundnuts, as well as cash crops such as oil palm (4.6 million ha), cocoa, coffee, cotton (3 million ha each) and tobacco. Around 230 million head of cattle, 470 million head of sheep and goats, and over 1 billion poultry constitute, along with fish, the animal component of the farming systems. The majority of households manage integrated tree-crop-livestock systems with limited access to agricultural services (notably markets). Cash crops, perennials and livestock contribute importantly to food purchasing power and play critical roles in farming system function, efficiency and resilience. Distinct patterns of household production and consumption characterize each farming system.

These African farming systems are diverse, and they evolve in complex ways (Pingali et al. 1987). The two main determinants of farming systems structure and function are access to agricultural resources (or resource endowment) and access to agricultural services. In relation to the former, while there are well-watered temperate and productive highlands (and even some snow-covered mountain peaks), the vast majority of African lands are in low to mid altitudes with rainfall varying from virtually nil in the Sahara and Kalahari deserts to over 3000 mm in the highlands. The most important agroecological zones in SSA are: moist subhumid and humid zones accounting for 38 per cent of SSA land; dry subhumid areas which cover 13 per cent; and the arid and semi-arid areas which cover 43 per cent of SSA land. Most of North Africa is arid or semi-arid, with well-developed irrigation in some areas.

In relation to services endowment, there is considerable variation in the density and quality of agricultural services. African governments have begun to reinvest in agricultural services in line with the CAADP target of at least 10 per cent of public expenditure to be spent on the agricultural sector. Consequently, some farmers have benefited from improved rural transport and market infrastructure, as well as the boom in mobile phones and information infrastructure led by the private sector, while others have yet to benefit.

The rural population of approximately 0.63 billion is also distributed unevenly across the African landscape. Seventy per cent of West Africa’s population lives in the moist subhumid and humid zones; in North Africa the population is concentrated in irrigated zones or semi-arid environments; in East Africa the population is distributed across several agroecological zones.

The diversity of resource endowments overlaid by a mosaic of human settlements, transport routes and markets, has shaped many different farming systems, each with its own structure and function. There might well be a greater diversity of farming systems in Africa than in any other agricultural region of the world – considering the diverse examples of highly productive banana-maize-coffee systems in the East African highlands, cereal-root crop-livestock systems in western Africa, artisanal fisheries off coastal Mozambique, nomadic pastoralism, and urban agriculture in many parts of Africa.

A number of principles guide the identification of African farming systems. First, the farming system classification must be useful for science leaders and policymakers to inform their decisions on how best to accelerate the improvement of food and nutrition security. Second, quantitative national, survey and spatial data, and key informant knowledge are equally important in delineating and analysing farming systems. Third, farming systems are characterized according to their ‘central tendency’ or median characteristics through
a process of pattern recognition which subsumes local heterogeneity. The main farming systems were mapped, and populations, prevalence of poverty, resource endowments, service endowments (access to markets), cultivated areas and livestock numbers were estimated from the resulting spatial analysis. Compared to the original analysis of Dixon et al. (2001), this update benefited from the availability of greater volumes of spatial data, although the breadth, consistency and compatibility of the spatial data are sometimes less than optimal. The methods and data sources are elaborated in Chapter 2.

The update analysis resulted in fifteen distinct farming systems, which are mapped (apart from the urban and peri-urban system) in Figure 1.1 and characterized in Table 1.4. Consistent with these principles, each of the farming systems is represented by a unique set of core characteristics or ‘central tendencies’ in relation to agroecology, access to services and livelihood pattern. Naturally, there is a modest degree of local heterogeneity,
including some differences in farm types and sizes, variation in soils and minor small differences in access to services and markets. The major variation is captured in defined subsystems within each farming system, described in subsequent chapters.

The approach facilitated the organization of data and expert knowledge to characterize and differentiate the agricultural populations and resource bases of each of the farming systems. Each of the systems and subsystems is characterized by a set of typical farm types with recognizable household livelihood patterns. Generally, the boundaries between systems or subsystems are gradients or soft gradations which are represented in Figure 1.1 by ‘feathered’ boundary zones. The updated and revised farming system classification for African agriculture is therefore pragmatic and differentiates farming system areas spatially, which allows presentation of the analytical results to policymakers in a practical, usable form. The classification combines similar farming systems in North Africa and SSA, for example irrigated, pastoral, and arid pastoral and oases farming systems.

In examining Figure 1.1, the two main determinants of farming systems diversity, namely resource endowment (dependent on agroecology and population density), and services endowment (access to agricultural services including markets), should be recalled. In relation to agroecology, the length of growing season (LGP, measured in days of adequate soil moisture for plant growth) is a key indicator of potential biomass productivity. One approximate indicator of services endowment is the travel time to the closest major market town, based generally on maps of rural roads. In practice, the indicator of travel time to rural market is best combined with expert knowledge on market access, because other factors, in particular supply chains and mobile phone communications, also influence market access.

Table 1.4 describes the levels of resource and service endowments and the poverty, population and farming patterns for each farming system. Most farming systems contain a substantial to high proportion of extremely poor families. Based on the absolute numbers of poor households, nearly 150 million extremely poor farming children, women and men live in the four most-populated farming systems, namely the maize mixed, agropastoral, highland perennial, and root and tuber crop farming systems. The farming systems are listed in Table 1.4 in approximate order of the estimated numbers of extremely poor farm people.

Each broad farming system listed in Table 1.4 has a set of recognizable and distinct development constraints and opportunities, and would benefit from a particular set of policies, investments and research products. Strategic interventions for each farming system are identified in the respective farming system chapters.

Farm household decisions and strategies

The core argument of this book is that an understanding of household strategies, differentiated by type of farming system, should form the basis for the design of effective agricultural policies and allocation of public resources. It is important, therefore, to distinguish the strategies of farm households from agricultural sector strategies. For example, household strategies to intensify food production, even at the risk of declining soil fertility, would conflict with Government strategies to promote sustainable land management, unless complemented by actions to promote food security or establish safety nets. Most countries contain several different farming systems, often with contrasting development constraints and opportunities. For example, a number of West African countries contain both the commercial tree crop farming system and the cereal-root
<table>
<thead>
<tr>
<th>Farming system</th>
<th>Agricultural population (millions)</th>
<th>Key system characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize mixed</td>
<td>107</td>
<td>Mixed farming dominated by maize with medium access to services in subhumid areas of East, Central and Southern Africa. Other livelihood sources include legumes, cassava, tobacco, cotton, cattle, shoats, poultry and off-farm work.</td>
</tr>
<tr>
<td>Agropastoral</td>
<td>98</td>
<td>Mixed crop-livestock farming found in semi-arid (medium rainfall) areas of Africa, typically with low access to services. It includes the dryland mixed farming system of North Africa, often depending on wheat, barley and sheep. In SSA the main food crops are sorghum and millet, and livestock are cattle, sheep and goats. In both cases, livelihoods include pulses, sesame, poultry and off-farm work.</td>
</tr>
<tr>
<td>Highland perennial</td>
<td>61</td>
<td>Highland mixed farming is characterized by a dominant perennial crop (banana, plantains, enset or coffee) and good market access, and is found in humid East African highlands. Other livelihoods derive from diversified cropping including maize, cassava, sweet potato, beans, cereals, livestock and poultry augmented by off-farm work.</td>
</tr>
<tr>
<td>Root and tuber crop</td>
<td>50</td>
<td>Lowland farming dominated by roots and tubers (yams, cassava) found in humid areas of West and Central Africa. Other livelihood sources include legumes, cereals and off-farm work.</td>
</tr>
<tr>
<td>Cereal-root crop mixed</td>
<td>43</td>
<td>Mixed farming with medium-high access to services dominated by at least two starchy staples (typically maize and sorghum) alongside roots and tubers (typically cassava) found in the subhumid savannah zone in West and Central Africa. Other livelihood sources include legumes, cattle and off-farm work.</td>
</tr>
<tr>
<td>Highland mixed</td>
<td>45</td>
<td>Highland mixed farming above 1700 m dominated by wheat and barley, found predominantly in subhumid north-east Africa with pockets in Southern, West and North Africa. Other livelihood sources include teff, peas, lentils, broad beans, rape, potatoes, sheep, goats, cattle, poultry and off-farm work.</td>
</tr>
<tr>
<td>Tree crop</td>
<td>30</td>
<td>Lowland farming dominated by tree crops (≥ 25% cash income from cocoa, coffee, oil palm or rubber) found in humid areas of West and Central Africa with good access to services. Other livelihood sources include citrus, yams, cassava, maize and off-farm work.</td>
</tr>
<tr>
<td>Pastoral</td>
<td>38</td>
<td>Extensive pastoralism (dominated by cattle), found in dry semi-arid (low rainfall) areas with poor access to services. Other livestock include camels, sheep and goats alongside limited cereal cropping, augmented by off-farm work.</td>
</tr>
<tr>
<td>Fish-based</td>
<td>22</td>
<td>Found along coasts, lakes and rivers across Africa with medium-high access to services, with fish a major livelihood. Other livelihood sources include coconuts, cashew, banana, yams, fruit, goats, poultry and off-farm work.</td>
</tr>
</tbody>
</table>
crop mixed farming system, with dramatically different needs related to infrastructure, credit, market development and research.

Farm women and men are the key decisionmakers in the management of natural resources, farm production, family consumption and farm investment. The decisions are framed by formal and informal institutions which are influenced by community values, public policies, markets, resource access regimes and the knowledge, skills and experience of the household, with the broad goal of improved individual and community welfare (Figure 1.2). Climate and economic risks are major considerations in operational and tactical farm and household management decisions. Farm households have a leading role in the management of natural resources — this is sometimes overlooked. Also, with increasing opportunities for women in agriculture, women are playing a wider role in farm management decisions. Other family members, including the elderly and the youth, also may influence strategic management and investment decisions.

There are strong linkages between increased crop or livestock productivity, improved farm household food security and reduced rural poverty. In good seasons or on medium-large farms, food crop surpluses are sold. Smallholders may sell at harvest and then purchase later in the year when their household stocks have been consumed. Although there are exceptions, sales of farm or household produce increase purchasing power, and they generally improve household food and nutrition security and reduce poverty.
food crop productivity often creates opportunities for diversification to higher value cash crop, tree or livestock income for households. Additional off-farm wage income also increases food purchase entitlements, often for the most vulnerable households, and offers flexibility for increasing purchases of fertilizer and other agricultural inputs. Population density and the level of infrastructural development influence the rate of spread of these outcomes. For these reasons, the mix of food crops, cash crops, livestock and trees, and their inter-linkages, is often an important determinant of food security outcomes. Gender roles in household decisionmaking and the management of income also shape the poverty, food and nutrition security outcomes. Farm size and wealth also count: normally smallholders spend a high proportion of additional income on local goods and services, whereas larger farmers tend to spend more outside the region.

Figure 1.2 Farm household decisionmaking connecting resource management, production, consumption, investment and welfare.
The households in a farming system pursue recognizable strategies to secure household food and nutrition security, increase income, improve livelihoods and satisfy other household goals. For example, pastoralists with limited market access might seek to grow herd size while smallholder vegetable producers might endeavour to intensify production of profitable vegetables sought by the market. The strategies naturally depend upon the prevailing livelihood patterns and opportunities, as well as the pattern of smaller and larger farmers, female- and male-headed households and differing degrees of dependence on off-farm income, cash crops and livestock in the farming system. One typology in the maize mixed farming system in Malawi differentiated households, which were ‘hanging in’, ‘stepping up’ or ‘stepping out’ (Dorward 2009). Such pathway-oriented typologies represent one way to identify evolving patterns of social organization, and they are useful to understand the needs for technology and institutional innovations, and to guide research and policy decisions. Clearly, the development needs and constraints of individual households within one farming system, such as the maize mixed farming system, are more similar to one another than to the households in another farming system.

In broad terms, small farm households have five main strategies to improve livelihoods and household food security or escape poverty, as follows:

- intensification of existing production and processing patterns
- diversification of production and processing patterns
- expanded farm, enterprise or herd size
- increased off-farm income, both agricultural and non-agricultural
- exit of the whole family from farming in the particular farming system.

These strategic options are not mutually exclusive: any particular household will often pursue a mixed set of strategies.

Intensification is defined as increased physical or financial returns from existing patterns of production, representing greater productivity of agricultural outputs including food and cash crops, livestock, trees and other beneficial activities. Although intensification is frequently associated with increased productivity as a result of greater use of purchased inputs, intensification may also arise from improved knowledge that leads to better use of existing household resources, including varieties and breeds, and labour and farm management skills, for example improved irrigation practices or better pest control. In Africa today, access to productive technologies, input and output markets often drives intensification. Readers are cautioned on the limits to rainfed crop-based intensification, partly because small farm sizes limit potential gains in household income. The concept of ‘intensification’ adopted in this book relates to increased productivity of existing farm activities, in contrast to on-farm diversification (see the following paragraph) and broader, landscape level, agricultural intensification which includes the introduction of new crops or livestock.

On-farm diversification is defined as an adjustment to the farm enterprise pattern in order to increase farm income or livelihoods. Often, there is a corresponding reduction in risk or income variability. Diversification exploits new market opportunities or existing market niches. Diversification may take the form of completely new enterprises, or may simply involve the expansion of existing, high value, enterprises. The addition or expansion of enterprises refers not only to production but also to on-farm processing
and other farm-based, income-generating activities. Farm women and men’s knowledge, adequate technologies (even if adaptation might be required) and access to markets often drive diversification. Diversification, as used in this analysis, should not be confused with improved livelihoods from off-farm sources or additional off-farm income, as found in some rural development literature.

Some households increase income or escape poverty by expanding the farm business size—in this context size refers to managed rather than to owned resources—especially where population density is low, land rights permit and finance is available. Beneficiaries of land reform are an obvious example of this source of poverty reduction. Increased farm size may also arise through incursion into previously non-agricultural areas such as forest—often termed expansion of the agricultural frontier. Two other examples are increased herd size where grazing land is available, and settlers on new irrigation schemes. Although this option is not available within many systems, it is of relevance particularly in parts of Latin America and SSA. Increasingly, however, such ‘new’ lands are marginal for agricultural purposes, and they may not offer sustainable pathways to poverty reduction.

Off-farm income represents an increasingly important source of livelihood for many poor farmers. Seasonal migration has been one traditional household strategy for escaping poverty. Remittances are often invested in land or livestock purchases. In locations where there is a vigorous off-farm economy, some individuals from poor households augment the family income with part-time or full-time off-farm employment.

Where opportunities for improved livelihoods are perceived, a proportion of farm households will abandon their land and/or herds altogether, and relocate the whole family into other farming systems, or into other rural or urban locations with economically attractive off-farm activities. This means of escaping agricultural poverty is referred to in the following chapters as an exit from agriculture.

These poverty escape strategies refer to extremely poor households which form a significant proportion (sometimes more than half) of the farming population in all systems. The balance of farm households is somewhat better off with greater than US$1.90 consumption per day; a small proportion could be termed ‘well off’. The same five strategies apply to the ‘non-extremely poor’ farm households in relation to the enhancement of livelihoods and incomes. Typically, the strategy mix of poor households differs from that of better-off households, whether smallholder or medium commercial farms.

The above five household strategies for reducing hunger and poverty, and enhancing livelihoods and incomes, will be referred to frequently in the following chapters and their relative importance assessed, based on the judgement of experts who are knowledgeable about each particular system (see also Chapter 2).

Drivers and trends shaping African farmers’ opportunities

Overall changes in farming systems since 2000

Since the origins of agriculture, the geography of crops, extent of livestock and the patterns of land use have continued to change. The degree of change in African farming systems over the period 2000–2015 is substantial. The agricultural population density has increased (even allowing for rural-urban migration) leading to a reduction in farm size, intensification of production and induced innovation in production practices. Meanwhile, agricultural market access has improved markedly, which has stimulated major changes in crop combination, herd composition and marketing of surpluses, but
notably not the widespread adoption of fertilizer. The farming systems with traditional export crops such as cocoa or coffee have maintained well-organized market systems. Another effect of improved service endowment has been diversification towards marketable crops and livestock. Such effects are most pronounced in the highland perennial farming system but are also evident in most farming systems including the maize mixed and cereal-root crop mixed farming systems. There has been an expansion of cultivated area in the majority of farming systems, notably the forest-based, cereal-root crop, maize mixed and agropastoral farming systems — reducing (but not offsetting) the pressure from increased population density. Notably, the land frontier has closed or is closing in many farming systems, including the four named earlier and the highland perennial and highland mixed farming systems.

Consequently, this analysis reflected the evolution of farming systems over the period 2000–2015. For example, where maize has been widely adopted in Central African areas that were originally cereal-root crop mixed systems, the areas were reclassified to the maize mixed farming system. The combination of changes in rural consumer preferences and the development of drought tolerant maize has also increased the proportion of maize, alongside sorghum and millet, in the agropastoral farming system, but not sufficiently to reclassify the farming system. The dualistic system characterized by mixed large-scale commercial and small-scale farming in Southern Africa was reassigned to other systems, notably the maize mixed and agropastoral systems. Market development has created more opportunities for smallholders in East Africa, in particular horticulture and dairy, and consequently the commercial smallholder highland perennial system has been enlarged. The key changes in the extent of farming systems over the period 2000–2015 are:

- creation of a newly delineated perennial mixed system in Southern Africa
- distribution of the large commercial and smallholder farming system entirely to other systems, notably perennial mixed, maize mixed and agropastoral systems
- adjustment of boundaries of many systems reflecting, primarily, increased population density, improved infrastructure and access to agricultural services, and improved technology and institutions
- substantial reduction in the extent of the cereal-root crop mixed farming system.

Quite apart from the major spatial changes, farming systems are changing incrementally. Some changes are visible, such as deforestation to expand cultivated land, but others relate to resource use, resource quality (e.g. fertility decline) or economic and social relationships (e.g. returns to labour, changing social capital). These build pressure over time which can generate step changes in enterprise combination or technology adoption. The trends and resulting pressure points can be identified by careful analysis and then future changes predicted. In the medium term, a set of universal drivers frames the evolution of each farming system along relatively predictable pathways. The seven drivers are:

- population, hunger and poverty
- natural resources and climate
- energy
- human capital, knowledge sharing and gender
- science and technology
- markets and trade
- policies and institutions.
<table>
<thead>
<tr>
<th>Drivers (trends)</th>
<th>Example metrics</th>
<th>Example influences on farm household decisions</th>
<th>Example influences on structure and function of farming system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, food security and poverty (increased pressure)</td>
<td>Population density, migration, urbanization, diet, under-nutrition, poverty</td>
<td>Labour availability and productivity, farm practice adoption decisions, schooling, risk avoidance</td>
<td>Labour-saving technologies, reduced herding/expanded stall feeding, low investment</td>
</tr>
<tr>
<td>Natural resources and climate (reduced availability and quality)</td>
<td>Farm size, herd size, irrigation, land tenure, land degradation</td>
<td>Scarcity of land and nutrients creates incentives for irrigation and soil management, increased climate risk</td>
<td>Reduced farm and herd size, reduced land/labour ratios, shift from extensive to intensive practices, stronger integration of crops, trees and livestock</td>
</tr>
<tr>
<td>Energy availability and use (increased availability, volatile prices)</td>
<td>Energy availability and use, firewood use, electrification</td>
<td>Timeliness of operations, replacement of labour</td>
<td>Earlier planting, better weeding, post-harvest processing, appropriate mechanization, small-scale irrigation</td>
</tr>
<tr>
<td>Human capital, knowledge sharing and gender (improved education, information and benefit sharing)</td>
<td>Education and skill level, mobile phone ownership, extension/farmer ratio</td>
<td>Improved farm decisions and management, improved benefit sharing, adoption of new practices or enterprises, greater involvement of women in decisions</td>
<td>Diversification, increased eco-efficiency (water and nutrient use efficiency), greater market orientation, improved gender equity, better farm-household management and increased total factor productivity</td>
</tr>
<tr>
<td>Science and technology (increased technology choices)</td>
<td>Productivity, technology adoption</td>
<td>Adoption of better practices and enterprises</td>
<td>Increased eco-efficiency, expanded production, improved quality of produce</td>
</tr>
<tr>
<td>Markets and trade (expanding market access and reduced marketing costs)</td>
<td>Input use, market surplus, supply chain length, food system structure, competition, agribusiness investment</td>
<td>Increased productivity, diversification, value-adding</td>
<td>Stronger market orientation and commercialization, reduced capital and transaction costs, greater intensification and diversification</td>
</tr>
<tr>
<td>Institutions and policies (strengthening institutions)</td>
<td>Expenditure on agriculture (incl. research, input subsidies, infrastructure), new regulations</td>
<td>Adoption of institutional innovations (markets, finance, risk sharing, conditional prepayment rate management)</td>
<td>Improved resource management, farmer group and cooperative coordination for marketing and resource management</td>
</tr>
</tbody>
</table>
The drivers correspond in general terms with the various drivers identified by other authors. For example, Reardon and Timmer (2014) identify five ‘transformations’ of the Asian agrifood economy (urbanization, diet changes, food system transformation, rural factor markets and capital-led farm technology intensification); these apply in part in Africa. Jayne (2016) and other authors describe other similar sets of mega-drivers.

In practice the above seven drivers interact, and the reader might anticipate a fundamental nexus between population density, access to natural resources and access to services including markets. It is important to note that trends (increasing, decreasing, steady) associated with each driver can rarely be assumed to be constant or linear. Whether there are ‘necessary’ and ‘sufficient’ conditions for change in each set of drivers plays out differently for different situations and for different farm sizes.

The above seven drivers influence farm household production and consumption decisions and farming system structure and function. Table 1.5 introduces the seven principal drivers which shape the development of farming systems structure and function in Africa; these are discussed in greater depth in the following subsections.

Population, hunger and poverty

People lie at the heart of sustainable development and farming systems options, and rapid population growth is dramatically shaping the limits and opportunities of farming pathways in all parts of the continent. Since 2000 the African region has had the fastest growing population in the world, and this is projected to continue for the coming decades. The total regional population was 1.2 billion in 2015 of whom 585 million (about half) were classified as agricultural. Regional population growth rate has been about 2.6–2.7 per cent p.a. since 1990, despite the effect of HIV/AIDS, but there is considerable variation across countries, for example the Ethiopian population growth rate is above 3.0 per cent. In the African context, such high growth rates boost the food economy and increase the dependency ratio of young and old on the workforce. While fertility rates have begun to drop in urban areas, the rural household’s traditional path to social security had been to have many children. However, there are indications of a growing emphasis in rural areas towards small families and well-educated children who can compete in the job market and earn off-farm income for the family.

The trends shown in Table 1.6 for SSA are indicative of the wider African situation. The SSA rural and agricultural populations are growing in absolute size although declining as a proportion of the total, partly because of rural-urban migration. Between 2010 and 2050 the rural population is projected to increase by 56 per cent, and the agricultural population by a slightly lower proportion. The SSA urban population is expected to surpass the rural population in about 2035. Such rapid urbanization stimulates urban and peri-urban farming, and influences other farming systems through opportunities for meeting growing and changing urban middle class demand for food. These demographic changes are expected to lead to a slower rate of decline in the land/agricultural population ratio and farm size – although the current person-land ratio is relatively low compared with that of Asia.

Such massive demographic changes raise four critical and interrelated policy issues. First, although the proportion of farmers in the total population is projected to decline from 56 to 33 per cent by 2050, the number of farmers will increase by half. Second, accordingly, in some farming systems with substantial forest or well-watered grazing lands, conversion of forest or grazing land to cropping is expected (as has happened since 2000
in the forest-based and agropastoral farming systems). In other more densely populated farming systems (such as the highland perennial or highland mixed), average farm size is expected to decline (average farm size has already declined in many farming systems).

Third, in either case, increased farm productivity is required, because, in the absence of a major expansion in food imports, each farm household will have to feed three households (themselves and two urban households – the equivalent global ratio will be four to one).

Fourth, without adequate mechanization, system intensification and diversification could be held back by labour shortages. A further critical policy concern is whether sufficient viable employment opportunities in secondary and tertiary sectors can be generated to absorb rural populations leaving agriculture, to avoid hotbeds of unemployment and poverty in expanding peri-urban slums which already account for about 60 per cent of the urban population in Africa.

Household food security is a critical determinant of farm family decisions about production and consumption. Food security has energy and nutritional dimensions, and can be analysed from the demand side, supply side and the linking market systems (Qureshi et al. 2015). In SSA nearly half of the rural households are not food secure, with great variation in the distribution of undernourishment across farming systems and between years. In practice, most poor households lack food security, but some well-off households are also malnourished because of nutritionally unbalanced diets. However, the situation is improving, as shown in Table 1.6.

Table 1.6 Trends in population and food security in sub-Saharan Africa compared with the world

<table>
<thead>
<tr>
<th></th>
<th>1970</th>
<th>2000</th>
<th>2010</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA total population (million),</td>
<td>285</td>
<td>642</td>
<td>823</td>
<td>1892</td>
</tr>
<tr>
<td>(SSA total pop as % of world)</td>
<td>(8)</td>
<td>(10)</td>
<td>(12)</td>
<td>(20)</td>
</tr>
<tr>
<td>SSA urbanization (%),</td>
<td>20</td>
<td>32</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>(Global urbanization %)</td>
<td>(37)</td>
<td>(47)</td>
<td>(52)</td>
<td>(67)</td>
</tr>
<tr>
<td>SSA agricultural population (million),</td>
<td>206</td>
<td>368</td>
<td>428</td>
<td>617</td>
</tr>
<tr>
<td>(SSA ag pop as % of world)</td>
<td>(11)</td>
<td>(14)</td>
<td>(16)</td>
<td>(29)</td>
</tr>
<tr>
<td>SSA agric pop as % of total SSA pop,</td>
<td>72</td>
<td>57</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>(Global agric pop as % of total global pop)</td>
<td>(83)</td>
<td>(79)</td>
<td>(38)</td>
<td>(23)</td>
</tr>
<tr>
<td>SSA farm households (approx million)</td>
<td>38</td>
<td>67</td>
<td>78</td>
<td>112</td>
</tr>
<tr>
<td>Household food security (kcal/person/day),</td>
<td>–</td>
<td>2188</td>
<td>2495</td>
<td>2580</td>
</tr>
<tr>
<td>(reference year of estimate)</td>
<td>(mid-1990s)</td>
<td>(est 2030)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undernourishment (% of population),</td>
<td>–</td>
<td>33</td>
<td>24</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes: SSA agricultural and farm household populations in 1970 and 2050 were estimated by the authors.
In the mid-1990s the average dietary energy consumption was 2188 kcal/person/day (compared with 2626 in developing countries as a whole). By 2010, dietary energy intake had increased to about 2495 kcal/person/day. Up to 2030, the average energy intake is projected to increase to 2580 kcal/person/day. In spite of the increased calorie supply, it is estimated that in 2030 around 15 per cent of the population (about 165 million people) will still be undernourished – an increase in the absolute number – unless deliberate measures are taken to ensure better access to food. Overall, it is clear that energy and nutrient deficiencies have constrained farmer activities and productivity, and they have slowed development, with long-term consequences for farming systems development.

Natural resources and climate

In many areas, as rural populations have grown, the availability of land for agricultural expansion has become limited. While African farmers have traditionally fallowed depleted cropland to restore soil fertility, many are now forced to crop some of their fields continuously. Fallowing has reduced or has been phased out in some systems. There is increased competition and more frequent conflicts between farmers and livestock herders regarding access to land used for community grazing in the past, thus reducing opportunities for crop-livestock synergies including manure production. The intensity of farming has increased often with inadequate investment in land management to restore fertility and limit soil erosion and other land degradation. Thus, maintenance of crop yields in the face of soil impoverishment has become a primary concern for many smallholder farmers across a range of farming systems.

Approximately two-thirds of agricultural land in SSA is estimated to be subject to degradation. These trends are worrisome, considering the imperative to increase agricultural yields to feed the rapidly growing population. Land degradation and the concurrent depletion of soil fertility which affects agricultural productivity has become a central development issue for policymakers, accentuated by climate change. As noted earlier, Africa is relatively well endowed with natural resources. However, soil resources are heterogeneous, with both some areas of deep fertile soils but also large areas of infertile and highly erodible soils (Inter Academy Council 2004).

One of the best overall indicators of natural resource health is net primary productivity, which varies according to regions in Africa. The decline in the annual biomass productivity of the land is particularly evident in the maize mixed farming systems in Zambia, Angola, D.R.C., Mozambique and Tanzania. There has also been marked degradation in the forest-based systems in the countries of the Congo Basin. Much of this loss of biomass productivity is due to forest clearing for agriculture, followed by lower productivity land use mosaic when forest is not allowed to sufficiently regrow. In contrast, biomass productivity in some parts of Sahelian and Sudanian West Africa has increased since the late 1990s, particularly in the agropastoral and cereal-root and tuber crops farming systems.

In relation to the 660 million ha of forest (about one-quarter of total land area), current annual deforestation is 0.16 per cent. The decline in closed-canopy forest area is expected to continue. However, as forest area declines and agricultural land is degraded, farmers have begun to regenerate or plant trees on crop lands. This trend, apparent in the agropastoral systems of the Sahel, is associated with the improved nutritional status of households. Wetlands and national parks are also often under pressure, despite national land use regulations or international conventions.
Over recent decades, rainfall patterns have changed across the globe, potentially affecting Africa more than other regions. In Africa, the most affected farming systems are likely to be those in the arid, semi-arid and dry subhumid areas, for instance the agropastoral and pastoral farming systems. The increasing frequency and severity of droughts are likely to cause more crop failures, high and rising cereal prices, low and falling livestock prices, decapitalization, distress sales of animals, and hunger. Vulnerable farm households are likely to buffer crop and livestock livelihoods with off-farm income, for instance seasonal migration, and wood and charcoal sales are common non-farm income sources. The above pressures could exacerbate land degradation and deforestation, accelerate the onset of desertification and drive people temporarily or permanently into more favoured farming systems, for instance the cereal-root crop mixed and maize mixed farming systems, and into urban areas. As a result, rural conflicts over resources will become more common, including between sedentary farmers and pastoralists.

Food and agricultural use of land has expanded steadily across Africa. Of the total land area, about 38 per cent was agricultural land, and approximately 9 per cent of total land was used for annual or permanent crops by 2015 (Table 1.7). The cultivated area increased from 170 million ha in 1961–1963 (including annually cultivated land and permanent crops) to 272 million ha by 2015 – mostly through the conversion of forest and grasslands and the shortening of fallows. Further expansion is possible. It is estimated that the Africa region has up to one-half of global agricultural land available for the expansion of crop land. The availability of suitable arable land in Africa for food and bioenergy crop production attracted much foreign investment and led to intense policy debates, especially since the 2008 food price spike. However, the momentum underlying the bioenergy crop production objective was undercut by recent changes in the European Union’s biofuels policies. As the food price spike passed, the priority for overseas food production abated. Domestic investment is now balancing foreign investment in large-scale farming ventures and is also being scaled up in medium-sized family farming.

Under existing climatic conditions, the region has large areas with high potential for rainfed cropping and grazing, and opportunities for expansion of surface water irrigation backed up by extensive (newly discovered) groundwater reserves. Only 2 per cent of the available water resources were utilized for irrigation (15.8 million ha equipped in 2015), compared with 20 per cent in developing countries overall. Projections suggest continued expansion of irrigated areas until 2030.

Table 1.7 Trends in land use in Africa

<table>
<thead>
<tr>
<th>Land use (million ha)</th>
<th>1970</th>
<th>2000</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural land area</td>
<td>1057</td>
<td>1123</td>
<td>1133</td>
</tr>
<tr>
<td>Forest land area</td>
<td>–</td>
<td>670</td>
<td>624</td>
</tr>
<tr>
<td>Crop land, including permanent crops</td>
<td>186</td>
<td>230</td>
<td>272</td>
</tr>
<tr>
<td>Permanent crop land</td>
<td>17</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>Permanent meadows & pasture</td>
<td>870</td>
<td>893</td>
<td>861</td>
</tr>
<tr>
<td>Land area equipped for irrigation</td>
<td>8.4</td>
<td>13.2</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Notes: data are indicative, whole of Africa data.
Livestock are first and foremost an asset for many smallholders. Animal populations in SSA are expanding steadily, as shown in Table 1.8. Poultry and goat numbers have expanded rapidly and nearly trebled over the four decades from 1970 to 2010; cattle, sheep and camels have nearly doubled in numbers during this period. Fishing activities are also increasing in response to local demand from growing populations as well as from cities and for exports, and this offers a form of relatively liquid household savings.

Both agricultural and livestock populations have increased substantially over the three decades to 2010. However, the number of cattle and sheep per farm household have decreased somewhat, in contrast to an increased household holding of goats and poultry. There is, of course, greatly increased pressure on grazing lands (Table 1.8) and crop residues as a result. Continued increase in livestock and poultry is expected, driven by market opportunities and relative prices. In fact the stocking rates are significantly lower in Africa than other parts of the world, which suggests scope to further increase livestock numbers through the use of technologies and institutions for crop-livestock integration.

Energy

In Africa, only approximately 2 per cent of energy consumption is devoted to agricultural and forest production, and this has been relatively steady over the past several decades. There
is a marked variation in energy use between different parts of Africa, with Western Africa reporting less than half the agricultural and forestry energy intensity of Southern Africa.

Two major uses of energy in production are tillage (depending on whether manual, animal draught or mechanized) and water pumping for small-scale irrigation. In marketing, transportation is the dominant use of energy for input and produce chains. The intensification of food production will require greater use of energy for traction, inputs and processing of outputs, although crop production using conservation agriculture \(^1\) practices is energy saving at the field level. Energy and food markets are now interlinked and price movements are correlated. Energy efficiency in food production, processing and marketing will be critically important in future decades.

Human capital, knowledge sharing and gender

Knowledge can be a powerful driver of farming systems development in many ways, and so information, human capital and inclusive approaches merit the close attention of policymakers. A key trend is the ‘feminization’ of farming as young males seek seasonal and longer-term employment in cities and other countries, leaving women as the \textit{de facto} farm managers. Improved farm household decisionmaking, increasingly by women, requires strengthened capacity through education and farmer training, supplemented by the dissemination and sharing of technological, market, policy and institutional information.

Communication technologies such as radio and mobile phones have accelerated access to information through formal and informal networking, and strengthened social capital and farmer-to-farmer sharing. Of the new communication technologies, mobile phones have had the most far-reaching effects. Two aspects of mobile phones are widely recognized: their rapid adoption and their potential use for agricultural information dissemination. There has been an explosion of mobile phone ownership since the mid-2000s in many African countries. Interestingly, mobile money exchange is expanding at a similar rate to mobile phones in Kenya, albeit with a lag of about four years. Information communication technologies (ICTs) may well revolutionize agricultural technical and market information sharing and offer the potential for fully interactive decision support services – along similar lines to India.

Science and technology

Science and technology, supported by appropriate policies and institutions, have an important role in resource management and productivity growth in crops and livestock in future decades, which is essential to reduce African poverty and food insecurity. Important innovations which have emerged in recent years include improved varieties and breeds, conservation agriculture, better pest control and improved nutrient management – and also a range of institutional innovations which enhance information availability (e.g. ICTs), market access and reduce risk (e.g. index insurance). As a generalization, the past and existing innovations streams seem to have benefited higher potential farming systems (e.g. cereal-root crop mixed system) more than low potential farming systems (e.g. agropastoral and pastoral systems). The existing portfolio of innovations also appear to favour increased productivity over risk management and adaptation to climatic variability. Furthermore, some technologies are not well suited for existing farming systems which, together with weak scaling institutions, have led to low adoption rates.

Increased investment in agricultural research (which shows consistently high economic high returns) is of fundamental importance for the continued supply of innovations to
underpin future food and nutrition security. It is expected that the contribution of the private sector to research will grow in the coming years. The concentration of research effort in a small number of countries creates opportunities for the ‘spillover’ of innovations between countries with the same broad farming systems.

The aggregate capacity of SSA agricultural R&D institutions is growing in terms of the absolute number of researchers and real public budget. However, when compared with the agricultural sector size, the number of researchers per million economically active agricultural workers has risen only slightly from 5.7 in the early 1980s to almost 7.0 in 2011; the public agricultural research intensity (the expenditure in relation to the Agricultural GDP) has declined over the same period from 0.6 per cent to about 0.5 per cent (compared with the recommendation of 1 per cent research intensity by the New Partnership for African Development (NEPAD)).

The Forum for Agricultural Research in Africa (FARA) has launched its Science Agenda, which provides a forward-looking framework for agricultural innovation. It recognizes the diversity of African agriculture and the different technology and investment needs of various farming systems. The incorporation of the farming systems framework into the Agenda offers a template for the management of spillovers between countries sharing the same or similar farming systems.

Although many metrics of research effectiveness exist, one of the most popular is the relative increase in food crop yields or animal productivity. Another indicator of technology uptake and effectiveness is the rate of closure of yield gaps. Often, technologies are embedded in inputs, so greater use of improved seed or fertilizer is also a useful proximate indicator.

The gaps between farm yields and potential yields are very large for most African crops and livestock production (larger than most other regions of the world). Cereals, fruit, maize and rice have shown modest to strong yield growth since 1970 – this has continued for cereals until 2015. However, the areas harvested of most food crops have expanded alongside the increases in yields. For example, while the yield of maize has increased 1.2 per cent per annum since the late 1980s, the maize area has expanded by 1.5 per cent per annum.

Total crop production is forecast to increase by about 70 per cent over the period from 2010 to 2050. Major increases are expected to come from expanded production on heavy lowland soils scattered across the continent in several different farming systems, in the humid and moist subhumid tropics, and on irrigated land in the maize mixed and several other farming systems. Despite the growth in demand for small-scale irrigation, most food production in Africa will continue to come from rainfed farming.

Livestock and poultry productivity compares favourably with global averages (using the partial productivity metric of kg meat per head; see Table 1.9) except in the case of cattle. Compared with Asia and Europe, Africa has progressed poorly with an overall beef (and buffalo) carcass increase of around 12 per cent over the period 1961–2012, compared with around 40 and 76 per cent in Asia and Europe respectively. As of 2012, average carcass weight in Africa is only 65 per cent that of Europe. However, cattle and sheep recorded an overall increase in productivity between 1970 and 2010, which is expected to continue in the coming decades.

Milk and meat production is expected to triple between 2010 and 2050 in response to strong income-induced demand. Because of different demand patterns, milk production is expected to expand most rapidly in East Africa and poultry production in West and Southern Africa. The increased demand for feed grains will have knock-on effects on crop production.

Although food crop yields have begun to rise recently, African yields lag behind Asia and developed countries for a variety of abiotic, biotic and institutional reasons. Land
degradation and climatic variability are the two main abiotic constraints. Inorganic fertilizer consumption is very low in SSA despite the declining soil fertility noted earlier. From 2002 to 2010, inorganic fertilizer usage was low and scarcely increased (from 11.6 to 11.7 kg N/ha) compared with an increase in global nitrogen nutrient application from 57 to 69 kg N/ha (FAO 2015). The use of compost or other soil amendments is important but does not compensate for these very low levels of fertilizer use.

The adoption of improved varieties of food crops has increased since the late 2000s, especially in Eastern and Southern Africa (one example is drought-tolerant maize). It is expected that the share of modern varieties will grow; inorganic fertilizer application will increase and mechanization will substitute for labour, especially that of women. Similarly, livestock industries will intensify with improved breeds, especially in the dairy sector, and increased use of planted forages and purchased feed. The current trend of tree planting and farmer-managed natural regeneration of trees on farmlands is expected to accelerate.

Biotic constraints also contribute strongly to large productivity gaps for both crops and livestock. Cassava and maize suffer from widespread and severe virus and insect attacks (for example, cassava mosaic virus and mealy bug, and maize lethal necrosis and stem borer). Tsetse infestation is a major factor influencing the distribution of livestock between different farming systems. Tsetse tends to be concentrated in the moist subhumid and humid lowlands, and in drier areas near game reserves, so cattle numbers per household tend to be higher in the dry farming systems than in the moist systems.

The ratios of agricultural workers to farm land influence the trends in crop, livestock and tree productivity. As outlined earlier, with relatively low population pressure on land, per capita food production in Africa has increased steadily, principally through extensification, that is, expansion of cropped area (World Bank 2008), supplemented by some yield increase. In contrast, increases in Asian cereal production arose principally from yield growth. Sometimes this contrast is explained by the overly simplistic notion that the Green Revolution has not yet reached Africa. However, the reality reflects the particular combinations of available land for expansion, population pressure, poverty, farming techniques, investment in R&D, patterns of adoption of science and technology, and input markets and trade. The increasing population in Africa, and the limits to land expansion, will place pressure on households to increase yield and intensify and/or diversify farming. It is noteworthy that trends in other countries pose opportunities and

<table>
<thead>
<tr>
<th>Animal type</th>
<th>1970</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle meat, kg/head</td>
<td>153</td>
<td>155</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>(182)</td>
<td>(206)</td>
<td>(212)</td>
</tr>
<tr>
<td>Sheep meat, kg/head</td>
<td>13.0</td>
<td>12.5</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(15.1)</td>
<td>(15.8)</td>
<td>(15.7)</td>
</tr>
<tr>
<td>Goats meat, kg/head</td>
<td>11.7</td>
<td>12.6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>(10.9)</td>
<td>(11.8)</td>
<td>(12.1)</td>
</tr>
<tr>
<td>Poultry meat, kg/head</td>
<td>1.0</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(1.6)</td>
<td>(1.6)</td>
</tr>
</tbody>
</table>

Note: Estimates are indicative, based on unweighted averages of the four regions of SSA. Global productivity data are shown in parentheses.
risks for Africa. For example, the cereal area has contracted in Europe as oilseeds and other high value crops were substituted for cereals, while cereal yields have increased.

Markets and trade

Agribusiness, markets and trade are all vital for agricultural development, and they require policy attention. Farming system intensification and diversification require an increasing volume of services, especially markets and suitably priced and available inputs. In fact, access to services, including markets, fundamentally influences the directions of farming systems development – sometimes this is even more important than the natural resources–population nexus. At a continental scale, the level of services and integration of markets will shape how effectively Africa responds to the challenges of the surging aggregate purchasing power of domestic consumers accompanied by changing consumer preferences.

Until recently agriculture accounted for about half of East African exports, whereas in West and Central Africa agriculture’s share of total exports declined from over 70 per cent in 1961 to less than 10 per cent in 2015, partly as a consequence of the expansion of petroleum and mineral exports. Africa’s principal agricultural exports are cocoa, coffee and cotton, although sugar, wine and fruits are significant exports in Southern Africa.

The proportion of agricultural products within total imports to the region has been rising. Cereal imports rose ten-fold over the period 1970 to 2010, from 6.5 Mt to 66.4 Mt, largely comprising rice and wheat imports (in contrast to cereal exports of 3–4 million Mt). If these trends continue, in 2030 the region would need to import an estimated one-sixth of its total cereal requirements. Generally, food aid has represented less than half of cereal imports; nonetheless, per capita food aid flows are larger than those to Asia and Latin America. Significantly, meat imports have increased nine-fold from 1970 to 2010, to 1.8 Mt (compared with 0.2 Mt exports).

Cereal and meat imports have surged, while exports have stagnated – despite attractive international prices and apparent, or at least potential, African competitive advantage in their production. Fortunately, intra-Africa regional trade now is growing more rapidly than international trade.

At the farming system and farm household levels, access to markets is mediated by local institutions, culture and traditions, which also influence the nature of current farming systems. Changing trade patterns can also reconfigure farming systems, for example changing trade led to the collapse of the sisal plantations in Tanzania and, later, the growth of smallholder dairy, floriculture, pigeon pea and export vegetables. However, the influence of market access is generally more nuanced, leading to practice change or an increased rate of diversification.

Access to markets can be measured in many ways, and the most common, but admittedly crude, metric is the shortest travel time to market (typically a mix of foot, animal and vehicular transport). Not surprisingly, yield gaps and farm performance gaps increase with greater distance to the national capital (which may determine access to a much broader bundle of services especially outside agriculture, including health and educational services). Naturally, transport infrastructure underpins market access. In the year 2000, SSA had only 8 km of rural roads per 100 km2 of land, compared with 22 km worldwide and 25 km in Asia (FAO 2015), but global projections are that more than two-thirds of new roads planned for construction by 2040 will be located in Africa, indicating the potential for improved access to markets (but also a corresponding risk for biodiversity).
Agribusiness’ principal roles are in market chains, storage, processing and distribution. Investment in input chains and agricultural service provision is essential for increased productivity and production of marketable surpluses, thus affecting intensification, diversification and growth of farm businesses. There are often high returns to investment in weak input markets such as finance, knowledge, seed, fertilizer and machinery. Once there are functioning input markets, investment in produce market chains becomes feasible. Not only are ‘business-friendly’ policies required but also mechanisms to mitigate business risk stemming from climate variability in rainfed farming. In most contexts, African underinvestment is greater in micro and small rural enterprises than in large corporations; it is sometimes argued that micro and small rural enterprises could underpin the next agricultural development revolution.

Policies and institutions

The perspectives shaping African agricultural policies have evolved since the food self-sufficiency goal expressed in state-led modernization in the 1960s. During the 1970s the intensification perspective of the Asian Green Revolution resonated with many African leaders. There was considerable interest in integrated rural development programs (IRDPs) which linked agricultural development to infrastructure, education and health services. During the 1970s and 1980s public agencies for R&D were strengthened. Multidisciplinary farming systems research with farmer participation was promoted and explored the ‘systems-fit’ and social aspects of technologies and market linkages in the complex smallholder systems. However, during the structural adjustment era of the 1980s and 1990s, much of the investment in public research and extension capacity was eroded, along with agricultural statistics and other agricultural services. The hopes that the private sector would fill the gap were not realized to the expected level (Mburathi pers. comm.). Today, it is clear that liberalization reform targeting economic growth needs to be complemented by food and nutrition security measures through agriculture as the core focus for development.

The Africa Union (AU) has encouraged improved governance at all levels. There are now many instances of successful regional, national and local institutions which stimulate sound resource management and productivity growth (UNDP 2015).

Regional agricultural development policy in Africa is principally shaped by the strategic framework of CAADP, which is aligned with the Sustainable Development Goals. In 2003, in Maputo, Mozambique, the African Heads of State and Government endorsed the CAADP as a framework to create an ambitious institutional and policy transformation in the agriculture sector. The CAADP development agenda is basically growth oriented. It aims to increase agricultural growth rates to 6 per cent per year, supported by at least 10 per cent of national budgets devoted to agriculture. CAADP focuses on four key pillars: expanding sustainable land management and reliable water control systems; improving rural infrastructure and trade-related capacities for market access; increasing food supply, reducing hunger and improving responses to food emergency crises; and improving agriculture research, technology dissemination and adoption.

Cross-cutting issues include, but are not limited to, capacity strengthening for agribusiness; academic and professional training; and improving access to information for agricultural strategy formulation. CAADP has substantially raised the profile of agriculture in national domestic politics, contributed to the development of incentive-oriented agricultural policies, facilitated the alignment of development partners to country priorities,
and has improved regional coordination. CAADP has been moving forward on both regional- and country-level processes.

Since the 2003 Maputo Declaration, African leaders have adopted various additional decisions and declarations on agriculture and food security, within the overall framework of CAADP. These decisions include, notably, the 2004 Sirte Declaration on the Challenges of Implementing Integrated and Sustainable Development in Agriculture and Water in Africa; the 2006 Resolution of the Abuja Food Security Summit; the 2007 Abuja Declaration on Fertilizer for the African Green Revolution; and the 2009 Sirte Declaration on Investing in Agriculture for Economic Growth and Food Security, among others. Reaffirming their resolve to advance the implementation of CAADP, African leaders adopted an ambitious goal that aims to eradicate hunger in Africa by 2025 within the context of a fully transformed agriculture system. The 2015 Malabo Declaration on Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved Livelihoods (and the Implementation Strategy and Roadmap) sets the scene for a comprehensive package of directives to advance agricultural transformation and root out hunger in Africa. Key to the transformation process is the CAADP Results Framework to track progress, ensure accountability and assess results.

The importance of the resilience of livelihoods was recognized by African leaders in the Malabo declaration, in which they committed to reduce the vulnerabilities of livelihoods, notably: increasing the resilience of at least 30 per cent of farm, pastoral and fisher households to climate and weather-related risks by 2025; enhancing social security for rural workers and other vulnerable social groups; and mainstreaming resilience and risk management in policies, strategies and investment plans. The achievement of these targets will require the analysis of different farming systems to identify priorities and targets, and formulate action-oriented strategies for tangible results and impact.

Ultimately, strengthened institutions, incentives (for private and appropriate collective action) and policies must be aligned with the specific agricultural growth potentials of different farming systems. Land and water policies lie at the heart of effective resource management and rural development. Land reform has been common in Southern Africa and has been one attempt to exploit the inverse farm size-productivity relationship. It is widely recognized that small farms have high productivity, provided services are available. Growth Corridor approaches are now being implemented in a number of countries, often where it is presumed that the conditions exist for mining, commercial farming, forestry and manufacturing (Weng et al. 2013), for instance, in Northern Mozambique, in Southern Tanzania’s maize mixed farming systems, and in Northern Ghana’s cereal-root crop mixed farming system. Recently African governments have emphasized the potential for intra-regional markets (Badiane and Collins 2016) and have supported improved infrastructure, border facilities and regulations. Increased productivity, both total factor and partial, is an important goal for the agricultural sector.

From farm household strategies to development priorities and policies

Cross-scale and system linkages

The importance of linkages between farm households, communities, landscapes and value chains was noted earlier in the chapter. The institutions which function at each level influence the decisions and management at lower levels with both positive and negative
outcomes. For example, open grazing by many communities threatens the retention of crop residues on the soil surface to reduce soil erosion and the opportunity to establish high-yielding trees. However, government policies might change community practices. For example, regulations which encourage stall feeding and the control of grazing, with a view to the revegetation of degraded watersheds, might lead to an unintended positive outcome through the reduction of grazing pressure, thus enabling the retention of crop residues in the crop fields and diversification into tree enterprises.

In any community there is heterogeneity in farm households’ characteristics and behaviour. Typical patterns of farm households’ differences – small and large, young and old – can often be recognized throughout a particular farming system. From an institutional and social capital perspective, knowledge of the variation in family composition, stage in life cycle, status in the community and access to external networks of traders can be an advantage in designing watershed management or technology extension programs.

Linkages across farming systems occur through seasonal and annual movement of labour, livestock, water, nutrients and agricultural produce. Capital accumulated in one system is often reinvested in another system. Natural phenomena such as wind, rainfall and runoff, and human, livestock and wildlife movement contribute to the spread of weeds, pests and diseases across systems. Land and water use practices in upstream locations affect farming systems downstream. Transport systems and infrastructure (road, rail and waterways) have traditionally aided trade in agricultural products and inputs. In addition, there are new and emerging linkages promoted by ICT, trade liberalization, new markets, advances in logistics, transport systems, knowledge management and information exchange.

Water management at the farm level has interconnected livelihood, hydrological and ecological impacts at watershed and basin scale. This is because water is both an ecosystem ‘good’ and a ‘service’. As an ecosystem good it provides drinking water, irrigation and hydropower. It also provides a range of ecosystem services – provisioning, regulating, cultural and supporting – that are often important to poor people’s livelihoods (Millennium Ecosystem Assessment 2005). The externalities created by upstream water use often lead to conflicts between upstream and downstream communities. Water governance and institutional arrangements thus influence how well conflict is resolved and how equitable water sharing is between upstream and downstream users, while maintaining adequate environmental water flows to sustain ecological functions and deliver critical ecosystem services to both rural and urban households.

Nutrient practices at the household level can have a cumulative effect on farming systems and landscapes, including whether the nutrients are traded and distributed elsewhere. Policies and other drivers, meanwhile, affect household decisions. While nutrients are fundamental to ecosystem function and farming system intensification, in practice urban areas are concentrators of nutrients, partly via food supplies from rural areas and intensive peri-urban livestock production. Recycling solid waste and food wastes can be a crucial part of rural-urban linkages.

Livestock migrations between farming systems are common including transhumance. For example, herders migrate cattle between the agropastoral farming system and higher-potential mixed farming systems, and camel herders migrate between the arid pastoral oasis and the pastoral systems. There are economic, livelihood and resilience advantages to long-distance migration. However, negative side effects include the transmission of animal disease by livestock or by wild species, especially large mammalian herbivores in Eastern Africa. Migratory birds and mammals are also major agents spreading animal and human diseases.
In terms of biotic stress, insect pests which limit crop production (in all African farming systems) also cross farming system boundaries, for example sorghum midge. Plantain and banana are other examples, as they suffer from wind-dispersed pests and diseases, for example black sigatoka. Black pod disease on cocoa is spreading across West and Central Africa. Striga (*Striga hermonthica*) is a frequent parasitic weed of sorghum, millet and maize which has spread widely across Africa.

Framework for strategic interventions

The emergence of a new set of African leaders and stronger national commitments to sustainable development, supported by the New Partnerships for Agricultural Development (NEPAD) and CAADP, have been game changers. Complementary initiatives in rural education, women’s empowerment and social capital have strengthened rural institutions. These recent investments in human capital, institutions and infrastructure are now reflected in improvements to food security and economic growth and in development indicators across the region. Farming systems development can contribute to Africa’s broad-based transformation in the following ways:

- **Farming systems for improved food and nutrition security.** The vast majority of the hungry and food insecure reside in rural areas. Effective food systems require productive and resilient farming systems, thus farming and food systems are a part of designing and implementing zero hunger programs and effective social security nets – and these have to be differentiated for the different farming systems. Moreover, supporting diverse integrated farming systems facilitates diverse diets, which is associated with reduced malnutrition.

- **Farming systems for poverty reduction.** The majority of rural livelihoods in African countries are dependent on natural resources, including land and water. Some 70 per cent of Africa’s poorest labourers are engaged in farming activities which differ by region. Therefore, farming system intensification must be tailored to local crops and livestock, which will generally increase farm labour productivity and reduce poverty. Moreover, to be effective, rural poverty reduction strategies for enhancing job creation, gender empowerment and entrepreneurship should be linked to existing farming and livelihood systems.

- **Farming systems for industrialization.** Industrialization has been identified by African leaders as a transformational path. Agribusiness and food processing will certainly boost agriculture and can help lift rural inhabitants out of poverty. Specific commodity programs can be tailored and targeted towards particular farming systems. In-depth analysis of farming systems, with a particular focus on backward and forward linkages and value-addition, can focus the investments on commodity and agribusiness potential.

- **Farming systems for adaptation to climate change.** The majority of livelihood systems in Africa are highly vulnerable to climate variability and climate change. Therefore, systematic analysis of farming systems can facilitate targeting, diversification and enhanced resilience of particular farming systems.

Knowledge of household responses to trends and interventions within different farming systems is essential information for developing effective public priorities and policies. Indeed, household strategies and development pathways can inform and underpin
Table 1.10 Examples of strategic interventions focused on household pathways

<table>
<thead>
<tr>
<th>Strategy intervention areas</th>
<th>Intensification</th>
<th>Diversification</th>
<th>Increased farm/herd size</th>
<th>Increased off-farm income</th>
<th>Exit from agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, poverty and food security (increased pressure)</td>
<td>Labour saving technologies</td>
<td>Labour-spreading enterprise mixes, diet education</td>
<td>Resettlement</td>
<td>Labour markets</td>
<td>Migration, land and livestock markets</td>
</tr>
<tr>
<td>Natural resources and climate (reduced availability and quality)</td>
<td>Climate-smart agriculture</td>
<td>Irrigation</td>
<td>Land tenure, water points for livestock</td>
<td>Secure land rights</td>
<td>Land for consolidation</td>
</tr>
<tr>
<td>Energy availability and use (slowly increasing availability, volatile prices)</td>
<td>Biomass</td>
<td>Renewables</td>
<td>Fuel for mechanization</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Human capital, knowledge sharing and gender (improving availability of information)</td>
<td>Extension, technology training and information sharing</td>
<td>Farmer training in new crops or livestock, empowerment of women</td>
<td>Farm management training</td>
<td>Labour market information</td>
<td>Labour market information</td>
</tr>
<tr>
<td>Science and technology (improving varieties, breeds and practices)</td>
<td>Technologies for water and input use efficiency</td>
<td>New crops and livestock</td>
<td>Scalable technologies</td>
<td>Labour saving technologies, mechanization</td>
<td>–</td>
</tr>
<tr>
<td>Markets and trade (improving access)</td>
<td>Strengthening existing input and produce chains/markets</td>
<td>Fostering new input and produce markets</td>
<td>Improved access to finance</td>
<td>Functioning labour markets</td>
<td>Land and livestock markets, employment creation especially in rural areas</td>
</tr>
<tr>
<td>Policies and institutions (strengthening public goods)</td>
<td>Policies assisting input availability</td>
<td>New markets and inputs</td>
<td>Land tenure and sale/leasing markets</td>
<td>Labour markets, decentralization, transport</td>
<td>Migration</td>
</tr>
</tbody>
</table>

choices of strategic interventions. For example, diversification would generally require more investment in new market institutions than intensification of existing enterprise patterns. Moreover, the nature of required policy interventions will differ across farming systems, depending on the availability of infrastructure and complementary services such as finance. Table 1.10 provides a framework, with illustrations, for linking farm household pathways to possible strategic interventions for each of the seven drivers discussed earlier. These are developed further in each farming system chapter, where priority strategic interventions are highlighted in terms of the expected effects on farming system structure and function.

In general, the strategies of extremely poor farm households differ from those of somewhat better-off households. At the farming system level, the combination of strategies (in proportion to household types) provides an indication of household responses to market or policy changes. The mix of strategies also informs the targeting of agricultural policies to different farming systems, and to different groups within any particular farming system. Both aspects are important for productivity and for equitable development outcomes.

Guide for readers

Chapter 2 outlines the data sources and methods which were used for the farming systems characterization. The reader will have noted that the names of the fifteen defined farming systems are not capitalized. The analyses of the major farming systems are reported in Chapters 3–16, with chapters in declining order, generally, of the population of extremely poor. Chapter 17 summarizes the key potentials and cross-cutting issues. The ways forward are presented in Chapter 18 and the conclusions in Chapter 19.

Note

Chapter 1

1 Conservation agriculture practices ensure minimum soil disturbance, year-round vegetative coverage of the soil surface and crop rotations, and are widely recognized as sustainable.

Chapter 2

1 In statistics a central tendency is a central or typical value for a probability distribution and relates to the tendency of quantitative data (or systems) to cluster around a central value.

3 A significant issue when modelling LGP from climate station data for Africa is the sparse distribution and maintenance of weather stations. This impacts the rigour and availability of consistent data and thereby limits identification and analysis of areas with bimodal characteristics. An alternative approach based on multi-temporal remote sensing data enables identification of start- and end-of-season parameters and as a result it is possible to identify and characterize areas with bimodal seasonal growing activity (Vrieling et al. 2013).

4 See www.fao.org/nr/climpag/cropfor/lgp_en.asp.

Chapter 3

1 South Africa was a notable exception where the average farm size continues to increase.

2 For example, in Ethiopia, where the constitutional provisions leave land ownership in the hands of the government, and farmers are only given use rights to land under long-term lease arrangements, the annual average growth in agriculture has been around 6 per cent in recent years.
3 SIMLESA – Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Program is supported by ACIAR and managed by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the sub-regional and national research organizations, Australian universities and other centres.

4 Corridor disease (*Theileria parva*) infection in cattle, which caused large losses in the mid-1990s, is considered a serious potential emerging disease (Mbizeni et al. 2013).

5 Nutrient quality of many of these manures is poor. The main effect is the addition of organic matter to the soil.

6 Inefficient bulk cargo and bagging handling operations at Dar es Salaam can increase the cost of imported fertilizer by 40 per cent by the time it has left the port.

Chapter 5

1 Subsystems in this chapter are essentially sub-regions distinguished by different market contexts.

2 Tanzania is not included in FAOSTAT (2010) and national statistics for DRC do not adequately reflect the context for the eastern highland region of DRC.

3 This discussion of the Kenyan highlands draws on various research reports of the Tegemeo Institute. These research reports analyse a nationally sampled panel survey of 1,275 households carried out in 1997, 2000, 2004, 2007 and 2011. This is the most comprehensive data set to analyse changes in farming systems in the post-liberalization period in Kenya.

4 The farm sample for the Neven study was drawn from a list of suppliers for the two largest supermarkets in Nairobi, while the sample for the Rao study was drawn from farmers in Kiambu district, oversampling for supermarket suppliers.

Chapter 7

1 Inland valleys are the natural water drainage channels in the landscape, serving as source of domestic water as well as production environments for long-season crops such as banana and root and tuber crops in addition to rice and vegetables.

2 The tops (stems and leaves) of crop plants after the crop has been harvested.

Chapter 8

1 The productivity of this farming system would be best measured through total factor productivity (TFP), which is a ratio of total outputs to total inputs (measured in an index form). If the ratio of total outputs to total inputs is increasing, then the ratio can be interpreted to mean that more outputs can be obtained for a given input level (Ehui and Jabbar 2002).

Chapter 9

1 Rainforest was defined as having an average canopy height of 35 to 40 m and a canopy coverage of more than 70 per cent.

Chapter 10

1 Agriculture includes crop and livestock production.

2 A Tropical Livestock Unit is a 250 kg animal weight-equivalent index, which allows species of various weights to be combined.

3 NOAA National Oceanic and Atmospheric Administration of the United States.

Chapter 11

1 Defined as the freedom of choice and action to achieve basic material needs, health, security and good social relations (Scholes et al. 2005).
2 Artisanal fisheries (a term used interchangeably with small-scale or traditional fisheries, even though the scale can actually be quite large and that they have often evolved quite far from what would be strictly traditional, e.g. the use of nylon instead of natural fibre) refers to various low-technology, low-capital, fishing practices undertaken by individual households (though sometimes organised into cooperatives or associations).

3 In many societies cars are a status symbol, and the Mercedes Benz is a particularly powerful one across Africa, leading to terms like the Mama Benz for the comparatively rich, fish-trading women of the Gulf of Guinea and Wabenzi (literally ‘the people of the benz’) in the Swahili-influenced cultures in east and central Africa.

4 Schematically, living beings can be split into long-lived slow reproducing species that are adapted to stable and predictable environments, and short-lived fast reproducing species (i.e. opportunists) typical of dynamic and highly variable environments. Such species will produce very high numbers of young, most of whom will perish even in the absence of harvesting. Extracting a large proportion of such a population before it reproduces, e.g. by fishing out juveniles, will therefore not necessarily affect the capacity of the next generation to maintain the species.

Chapter 13

1 ‘Small-scale irrigators’ refer to farmers in a small-scale irrigation scheme of approximately 50 ha, while ‘large-scale irrigators’ refer to farmers in a community-managed irrigation scheme of more than 300 ha.

Chapter 14

1 Oases are intensively cultivated areas with access to water in desert or arid environments that are generally characterized by a large deficit between precipitations and evaporation linked to high temperatures and frequent dry winds (Lacoste 1987).

2 Oasis depressions are specific geomorphological units of spatially limited area (up to a few hectares) found in inter-dune depressions with clayish soils where oases are found.

3 Salt that comes to the soil surface through capillary action. It is collected, at least partially separated from its muddy base, evaporated, and transported in long blocks on camel back.

Chapter 17

1 The land equivalent ratio measures how much more total production is increased by combining enterprises on the same piece of land versus managing them separately.

References

MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and Human Well-Being: Health Synthesis. World Resources Institute, Washington, DC.

Africa through the farming systems lens

Africa through the farming systems lens

FAO. (2011b) Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production. FAO.

IFAD/FAO. (2010) Global Consultation on Cassava as a Potential Bioenergy Crop. IFAD and FAO.

De Leeuw, P.N. and Tothill, J., 1990. The Concept of Rangeland Carrying Capacity in Sub-Saharan Africa: Myth or Reality. ODI.

FAO, 2013. Children's Work in the Livestock Sector: Herding and Beyond. Economic and Social Development Department, FAO.

Africa through the farming systems lens

diversity and structure of forest regrowth in a slash-and-burn agricultural system in southern

Conference report of the Poverty Environment Network (PEN), www.cifor.org/pen/news-and-
events/london-conference.html.

Coomes, O.T., Takasaki, B. and Rhemtulla, J.M. (2011) ‘Land-use poverty traps identified in
shifting cultivation systems shape long-term tropical forest cover’, Proceedings of the National

humid lowlands of Cameroon. Agricultural Research & Extension Network paper 103. Overseas
Development Institute, London.

Diaw, M.C. (1997) Si, Nda Bot et Ayong: culture itinérante, occupation des sols et droits fonciers au Sud-
Cameroun. Réseau foresterie pour le développement rural 21e. ODI.

hoods in a changing world. FAO.

Gockowski, J., Tonye, J., Baker, D., Legg, C., Weise, S., Ndounbé, M., Tiki-Manga, T. and
Fouaguégué, A. (2004) Characterization and diagnosis of farming systems in the forest margins bench-

Hauser, S. (2007) ‘Plantain (Musa spp. AAB) bunch yield and root health response to combina-
tions of mechanical, thermal and chemical nematode control measures on suckers’, African Plant

Hauser, S., Bengono, B. and Bitomo, O.E. (2008a) ‘Short- and long-term maize yield response to
Mucuna pruriens and Pueraria phaseoloides relay fallow and biomass burning versus mulching in the forest zone of southern Cameroon’, Biological Agriculture and Horticulture, vol. 26,
pp. 1–17.

(Musa spp., AAB, subgroups French and False horn) to hot-water treatment and fertilizer application

ties and their effect on maize yields in the forest zone of Cameroon’, Journal of Plant Nutrition

Hauser, S., Nolte, C. and Carsky, R.J. (2006) What role can planted falls play in humid and

Ickowitz, A. (2011) ‘Shifting cultivation and forest pressure in Cameroon’, Agricultural Economics,
vol. 42, no. 2, pp 207–220.

IITA (2017) CGIAR Research Program (CRP) 1.2. Humidtropics: Integrated Systems for the Humid

indexmundi.com/agriculture/?country=cd&commodity=palm-oil&graph=production.

Africa through the farming systems lens

FAO (2011) Save and Grow: A Policy Makers Guide to the Sustainable Intensification of Smallholder Crop Production. FAO.

FARA (2014) Science Agenda for Agriculture in Africa: Connecting Science to Transform Agriculture in Africa. FARA.

