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Abstract 

Managing rodent pests on a broad scale using lethal methods is not an appropriate 
long-term strategy given their extraordinary breeding capacity and high mobility. 

Moreover, environmental , an imal welfare and ethical concerns regarding the use of 

poisons and trapping has decreased the acceptance of mortality methods in recent 
times. Another reason for avoiding lethality is that it may promote a strong selective 
pressure for resistance to the lethal agent, be it a disease or a chemical. The 

addition of fertility control , specifically immunocontraception, to the armoury 
currently available to control rodent pests, is discussed in this chapter. Fertility 

control aims to reduce a specific population size by reducing the number of young 

produced and recruited into the population. 

Existing fertility control techniques (e.g. steroids, synthetic hormones) are flawed 

because they require repeated administration to maintain the sterility level of the 
population, they have undesirable physiological and behavioural side effects and 
they are not specific to the target animal . Delivery of these sterilising agents is 

logistically difficult, time-consuming and expensive and therefore they are not 

suitable for controlling field populations of rodent pests that are often widespread 
and cryptic in their habits. An immunocontraceptive vaccine , either distributed in bait 

or disseminated in a species-specific viral vector, is a new tool that could be used to 
reduce the productivity of pest populations. The various components of this 

approach and 'proof of concept' laboratory experiments conducted in house mice in 

Australia are described. It must be recognised that to critically evaluate the efficacy 
of a viral-vectored immunocontraceptive agent requires a multi-disciplinary approach 

with a strong ecological and epidemiological focus . Only then can the impact of this 

control technique be assessed at the population level. 
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INTRODUCTION 

R
ODENTS HAVE gained the 

reputation as one of the most 
persistent and ubiquitous 

vertebrate pests affecting human 
populations. They cause economic problems 

because of the damage they inflict in 
agricultural systems (e.g. Caughley et al. 
1994), environmental problems due to the 
chemicals used for their control (e.g. 
Saunders and Cooper 1981; Singleton and 
Redhead 1989), social problems associated 
with their close proximity to human 

habitation (e.g. Beckmann 1988) and health 
problems as carriers of zoonoses (Childs et 
al. 1994; Gratz 1994; also see Mills, Chapter 
6). Of increasing concern is the impact of 
introduced rodents on the conservation of 
native wildlife (e.g. Wace 1986; Moors et al. 
1992; Key et al. 1994; also see Dickman, 

Chapter 5). Rats have been reported as the 
major pest in rice crops in Southeast Asia 
(Geddes 1992; Singleton and Petch 1994), 

and cause significant problems in Africa 
(Leirs et al. 1997; also see Makundi et al., 
Chapter 22), Australia (Singleton and 
Redhead 1989; Caughley et al. 1994), China 
(see Zhang et al., Chapter 12) and elsewhere 
(Prakash 1988a; also see Buckle, Chapter 7). 

Many species that become pests do so 
because of their reproductive potential. They 
often have several large litters in each 
breeding period, show early onset of sexual 
maturity and have a short life expectancy 
(Tyndale-Biscoe 1994). Rodent pests 

typically show these life history traits-for 
example, one breeding pair of house mice 
(Mus domesticus) is theoretically capable of 
producing over 600 offspring in six months 
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and the average life expectancy in a field 
population is four to six months (Singleton 
1989). A post-partum oestrus allows females 
to produce a litter every 21 days 
(Whittingham and Wood 1983). Therefore, 

curbing the reproductive potential of 
rodents may be a more appropriate control 
tactic than increasing their mortality 
(Singleton 1994; also see Krebs, Chapter 2). 

Increasing community interest in 
environmental and animal welfare issues 

associated with conventional pest control 
techniques, such as poisoning and trapping, 
has focused interest on developing non­
lethal, non-toxic alternatives (Bomford 

1990). One such strategy is to focus on 
reducing reproduction, rather than 

increasing the mortality of the pest species. 
This is commonly referred to as fertility 
control. 

In this chapter, we will examine why 

fertility control is theoretically superior in 
many respects to conventional methods of 
rodent control that rely on increasing 
mortality. We discuss the various methods 
of fertility control currently available for 

red ucing rodent pest populations and then 
focus on immunocontraception, a relatively 
new approach to the problem of controlling 

wild pest populations. 
Effective pest control requires a thorough 

understanding of the biology and 
population dynamics of the pest species 
(Howard 1967). Specifically, for effective 
fertility control, a reduction is required not 
only in the reproductive potential of the 
species, but also in the final population size 
(Bomford 1990; Bomford and O'Brien 1997) 

and in the potential damage inflicted 
(Bomford and O'Brien 1997). Thus, we 
emphasise in this chapter the importance of 



an ecological framework for considering the 

use of immunocontraception and ferti lity 

control in general. We also stress that 

although the general principle of fertility 

control is similar for all mammals, the 

particular approach may be different for 

each pest and needs to consider the 

ecological and behavioural features of each 

species (Cowan and Tyndale-Biscoe 1997). 

CONVENTIONAL METHODS OF CONTROL 

Control of rodent pests currently relies on 

increasing their mortality. For large-scale 

control in agricultural systems, this typically 

involves the use of rodenticides such as 

anticoagulants and acute poisons (see 

Meehan 1984; Prakash 1988a for reviews). In 

small-scale domestic control, both 

rodenticides and traps are often employed. 

These methods are easily applied by farmers 

or householders and there is usually an 

immediate effect on population size and 

Table 1. 
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da mage caused by rodents (Table 1) 

(Bomford 1990). 

However, these conventional control 

methods are obviously not always effective 

in the long term (Table 1) as rodent pests are 

still a major problem. This may be because 

lethal methods are often used inefficiently as 

an ad hoc control approach when rodent 

populations have already reached high 

densities. Another major factor is the high 

reproductive capacity of the pest and the 

ability to re-invade treated areas from 

surrounding untreated sites (e.g. Emlen et al. 

1948; Twigg et al. 1991). Also, because these 

methods are often labour intensive, they are 

rarely applied in areas with inaccessible 

terrain. The expense of poison-baiting large 

areas long-term can also be prohibitive, 

particularly if damage to crops is not 

reduced. For example, during a mouse 

plague in southern Australia in 1993, the cost 

of one bait application to 46,000 ha was 

approximately A$319,500 (Kearns 1993). 

Advantages and disadvantages of rodenticides for the control of rodent pests (after Singleton and Redhead 

1989; Bomford 1990; Chambers et al.1997 unless indicated otherwise) . 

Advantages 

Immediate effect on population numbers and 
damage 

Permanent control method; removes animals 
for the whole of their expected life span 

Cost effective for short-term control and 
reduct ion in damage caused 

Disadvantages 

Development of bait shyness if sublethal dose ingested 
(prakash 1988b) 

Non-target deaths due to primary and secondary 
poisoning-not species-specific 

Inhumane 

May pollute the environment with pOison residues 

Potenti al re-invasion of treated areas by rodents from 
neighbouring untreated sites 

Ineffect ive over the long-term for highly fecund or mobile 
species (e.g. rodents) (Caugh ley 1977, 1985) 

Expensive to apply over large areas long-term 
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Fertility control has the potential to 
overcome some of the inadequacies of 
conventional control techniques and a 

naturally disseminating immuno­
contraceptive would reduce the need for 
manual delivery of the control agent. 

FERTILITY CONTROL AS AN ALTERNATIVE 

TO CONVENTIONAL METHODS 

Fertility control has been suggested as a 

more appropriate control strategy than 
enhancing mortality under the following 
circumstances: 

~ for species with high fecundity (Caughley 
et al. 1992; Tyndale-Biscoe 1994); 

~ for species with high natural mortality 
rates and a rapid population turnover 
(Stenseth 1981; Bomford 1990; Hone 1992; 

Barlow 1994; Barlow et a1. 1997); 

~ when a more humane method of 
population control is desired (Marsh and 
Howard 1973; Hutchins et al. 1982; 

Hutchins and Wemmer 1987); 

~ when the effects of sterilisation exceed any 
increases in juvenile or adult survival due 
to a lowering of birth rates (Sinclair 1997); 

and 

~ for preventing or reducing population 
growth after some other technique has 
reduced numbers, particularly in long-
lived (Bomford 1990; Barlow 1994). 

The last point emphasises one of the main 
differences between these two control 
strategies-increasing mortality has an 

immediate effect on population numbers 
and damage, while reducing fertility has a 
delayed response until natural mortality 
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reduces population size (Barlow et a1. 1997). 

If sterile individuals inflict as much damage 

as fertile individuals, sterility is of little 
practical value to agriculturalists. Thus, in 
some instances, fertility control may need to 
be used in conjunction with another control 
method. 

It has been suggested that the presence of 
a given number of sterile individuals in the 
population exerts a greater, more sustained 
biocontrol pressure than if the same number 
of animals were simply removed from the 

population (Howard 1967). Sterile 
individuals fail to contribute to the next 
generation as well as competing for space, 
food and social order. 111is in turn reduces the 
reproductive success and survival of fertile 
individuals and continues the suppression of 

breeding in subordinates if dominants are 
sterilised (Howard 1967). Therefore, fertility 
control could be used as a long-term strategy 
for slowing a population'S growth rate and 
hence maintaining numbers at this lower 

level. Modelling the relative impact of culling 
versus sterilisation on populations with 
density-independent or exponential growth 
rates supports this argument (Bomford 1990). 

However, for populations with de~<;ity­

dependent or logistic growth rates, the 
relative efficiency of sterilisation will depend 
on the nature of the density-dependent 
regulation. Populations with density­

dependent mortality appear to be reduced by 
sterilisation more quickly than those with 
density-dependent recruitment (Barlow et al. 
1997). 

GENERAL AIMS OF FERTILITY CONTROL 

Fertility control aims to reduce population 
size by reducing the number of young 



produced and recruited into the population. 
This can be achieved by temporary, 
permanent or partial sterilisation. 

A successful fertility control method 
therefore needs to (after Bomford 1990; 
Bomford and O'Brien 1997): 

~ cause temporary or permanent sterility 
leading to reduced recruitment in the 
population; 

~ be deliverable in a way that allows an 
adequate proportion of the target 
population to be treated, particularly for 
widespread and abundant species in areas 

with poor access; 

~ reduce the target population sufficiently to 
reduce damage caused by the pest species 
to an acceptable level (Braysher 1993); 

~ produce minimal side effects to the target 
species (e.g. behavioural changes, 
interference with social structure); 

~ be target-specific; 

~ be environmentally benign (Marsh and 

Howard 1973); and 

~ be cost effective compared with 
conventional methods of control. 

In the following section, we explore the 
various options available for fertility control 
of rodents and examine how well each of 

these satisfy the criteria for a suitable fertility 
control agent for controlling wild 
populations. 

OPTIONS FOR FERTILITY CONTROL -

EXISTING TECHNOLOGIES 

Many techniques have been developed for 
managing or controlling the fertility of 
individual animals in captivity or in 
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confined areas that are not subject to 
immigration. These methods include 
surgical sterilisation or castration, use of 
chemical sterilants, agonists that block the 
function of natural hormones, and inhibitors 

of lactation (Table 2). Most of these 
approaches are expensive and time­
consuming to apply, often have undesirable 
side effects (e.g. chemosterilants can induce 

gastrointestinal problems, abnormal growth 
and dysfunction of the gonads), and affect 
non-target species. Many disrupt gonadal 
function and sexual behaviour. Further, 
their applicability and effectiveness for free­

ranging populations is low due to the 
difficulties of delivering the sterilising agent 
on a broad scale and sustaining the 
inhibition of reproduction. 

IMMUNOCONTRACEPTION FOR 

CONTROLLING PEST POPULATIONS­

THE CONCEPT 

Immunocontraception uses the body's 
immune system to induce immune 
responses (circulating antibodies or cellular 
immune effector cells) against reproductive 
cells or proteins essential to successful 
gametogenesis, fertilisation or implantation, 
leading to infertility. The feasibility of 
immunocontraception was directly 
demonstrated when Baskin (1932) injected 

women with human sperm and no 
conceptions occurred during the one-year 
follow-up period. 

Ideally, the immunocontraceptive 
prevents pregnancy but does not disrupt 
endocrine function (i.e. renders the animal 
infertile but not impotent) and therefore 

reprod uctive I social behaviour is unaffected. 
Animals continue to occupy territory, 
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Table 2. 

Summary of potential techniques for fertility control of pest populations and assessment of their relevance for managing rodents. Sources: 

Singleton and Spratt 1986; Spratt and Singleton 1986; Marsh 1988; Vickery et al. 1989; Bomford 1990; Sankai et al. 1991; Gao and Short 1993; 

Tyndale-Biscoe 1994,1997a; Marks et al. 1996; Becker and Katz 1997; Jochle 1997. 
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Technique for fertility 
control 

Surgery 

Disease 

Chemicals 

Major advantages 

Castration and ovariectomy 

Permanent 

One treatment only, therefore costs 
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(Permanent 

One treatment only, therefore costs 
recouped over time 
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Table 2. (Cont'd) 
Summary of potential techniques for fertility control of pest populations and assessment of their relevance for managing rodents. Sources: 

Singleton and Spratt 1986; Spratt and Singleton 1986; Marsh 1988; Vickery et a!. 1989; Bomford 1990; Sankai et a!. 1991; Gao and Short 1993; 
Tyndale-Biscoe 1994, 1997a; Marks et al. 1996; Becker and Katz 1997; Jochle 1997. 

Technique for fertility 
control 

Chemicals 

Major advantages Major disadvantages 

Synthetic steroids, anti-steroids, anti-steroid receptor 
(e.g. Diethylstilbestrol, RU486) 

Low cost 

Bait or implant 

Side effects (dose dependent) 

Must be administered regularly 

Non-target effects 

Prolactin inhibitors (affect lactation and/or gestation 
(e.g. Bromocriptine, Cabergoline) 

Oral delivery -

Low cost 

Not permanent 

May not be ethically acceptab le as 
starves young or aborts foetuses 

Must be regularly administered 

Immunocontraception Disseminating vector, non-<iisseminating vector, 
synthetic delivery systems (e.g. ISCOMsb, microspheres) 

Long term reduction in fertility Not yet available 

Species-specific , humane, cost effective May need to repeat application 

Could be reversible Includes use of genetically modified 
organisms 

a GnRH = gonadotrophin releasing hormone 

b ISCOMs = immunostimulatory complexes. 

Efficacy for rodent pest populations 

Current Future 

Low, but untested Low, but untested 

Low 

Moderate but 
untested 

Moderate 

Expected high 
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maintain social status and may suppress the 

fecundity of subordinates. Such an approach 

is potentially species-specific, considered 
humane and could be cost effective in the 

long term (Tyndale-Biscoe 1994). 

Unlike vaccines directed against 

infectious diseases, immunocontracep tive 

vaccines are directed agains t 'self' proteins 
that would not normally be recognised as 

foreign (Alexander and Bialy 1994; Tones 
1994; Dunbar 1997). Therefore, the 'self 

antigen to be used in the vaccine must be 

presented in a 'foreign' or 'non-self' form to 

elicit an immune response. In 1987, a new 
approach to fer tility control was 

conceived-the concept tha t viruses could 

be used to deliver immunocontraceptives 

(Tyndale-Biscoe 1994) (see Figure 1). This 

Sperm or egg proteins 

Figure 1. 

Fertilisation blocked 
by antibodies 

could be achieved by delivering the 

imrmmocontraceptive vaccines through the 

agency of a virus or other con tagious agen ts 
that spread na turally through the target pest 

population . Similarly, a non-disseminating 

agent in baits could be used to provoke an 

appropriate immune response. 

Since 1992, this approach has been under 

development at the Cooperative Research 
Centre for Biological Control of Vertebrate 

Pest Populations (Vertebrate Biocontrol 

CRC) and its successor the Pes t Animal 

Con trol CRC based in Canberra, Australia. 

The Centre's mission is "to contribute to the 
better management of Australia's 

biodiversity by limiting growth of vertebrate 

pest populations through fertility control". 

fW -
DNA 

Insert DNA in 
mouse virus 

Infect host 

Host cells produce 
anti-sperm/egg 

antibodies 

The concept of viral-vectored immunocontraception. Genes encoding a reproductive protein(s) are 

incorporated into the genetic structure of a species-specific virus. This virus infects the host, expressing 

the reproductive protein(s) as well as viral proteins on the surface of infected cells. The host 's immune 

system produces antibodies against the reproductive protein(s), as well as the virus, and these spread to 

the reproductive tract where they bind to either the egg or the sperm and block fertilisation. Redrawn with 

permission from the Vertebrate Biocontrol CRC. 
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IMMUNOCONTRACEPTION -

ITS COMPONENTS 

The choice of reproductive antigen(s) 

Fertility control agents may be of two types: 
anti-gonadal or anti-gametic. By targeting 
the gametes there is likely to be less 
disruption of other reproductive functions, 
but sustained immune responses may be 
more difficult to achieve because the gamete 
proteins are produced in small quantities at 
specific sites and are not highly 
immunogenic (Alexander and Bialy 1994). 
Initial studies by many groups have focused 
on sperm proteins as candidate antigens. 
The view was that male antigens might be 
able to induce significant immlme responses 
in the female reproductive tract because they 
were not expected to be auto-antigens in 

females. The potential of sperm proteins, 
such as SP-1 0 and testis-specific lactate 
dehydrogenase (LDH-C4) has been explored 
in humans, baboons and pigs (Goldberg and 
Shelton 1986; Herr et al. 1990a,b) and PH-20 
in guinea pigs (Primakoff et a1. 1988). Initial 
research in the Vertebrate Biocontrol CRC 

also focused on sperm antigens (Bradley 
1994; Holland and Jackson 1994; Tyndale­
Biscoe 1994). However, after several sperm 
antigens had been tested by direct 
immunisation without effects on the fertility 
of female rabbits or foxes (Bradley et a1. 1997; 
Hardy et al. 1997; Holland et al. 1997), 
attention turned to the female gamete 
antigens, specifically the zona pellucida 
proteins forming the extracellular coat of the 
oocyte. 

In the mouse, the zona pelluCida 
comprises three non-covalently linked 
glycoproteins, ZP A, ZPB and ZPC, which 
are expressed by the growing oocytes in the 
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ovary. ZPC is the receptor for sperm binding 
at the time of fertilisation (Florman and 
Wassarman 1985; Rosiere and Wassarman 
1992). Passive immunisation with 
monoclonal antibodies to ZPC inhibit 
fertilisation in vivo (East et a1. 1984, 1985), 
and active immunisation with synthetic 

pep tides which include aB-cell epitope of 
ZPC also induce infertility for periods from 
0-8 months (Millar et a1. 1989; Lou et al. 
1995). For these reasons, mouse ZPC (also 
known as ZP3) was the first candidate 
antigen to be tested in a mouse viral­
vectored system. 

Many of the zona pellucida proteins and 
sperm proteins show high identity between 
species (Harris eta1. 1994; Bradley eta!. 1997; 
Holland et al. 1997; Jackson et a1. 1998). 
Therefore a key challenge is to identify or 
engineer the antigen to be species-specific. 
This may be achievable using specific 
peptides or epitopes. The difficulty then 
becomes whether such small pep tides have 
the ability to block fertility. The use of 
epitopes alone or in combination with 
immunomodulatory molecules (such as 
cytokines or T -cell help epitopes) to enhance 
the species-specific immune responsiveness 
to these antigens are currently being 
investigated (Dalum et al. 1997; Ramsay and 
Ramshaw 1997). 

Delivery of the immunocontraceptives 

The delivery of an anti-fertility vaccine to 
populations of wild animals over large areas 

poses a number of unique problems. It is 
essential to consider the distribution of the 
species under study, whether large-scale or 
localised control is desired, and any possible 
consequences for non-target species. Another 
factor is the genetic heterogeneity of the 
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wildlife population, which is certain to 

generate significant individual variability in 
the immune responses to a vaccine (Klein 

1979). Effective application of any vaccine 

requires that a high level of immunity can be 
achieved amongst individuals exposed to the 

vaccine (Alexander and Bialy 1994). As 
mentioned previously, it may therefore be 

necessary for the antigen( s) to be presented in 
conjunction with other highly immunogenic 
carrier proteins (e.g. cytokines and 
immunomodulatory molecules) to maintain a 
contraceptive level of immunity. In addition, 

multiple antigenic detenninants could be 
included within a vaccine to stimulate a 

broad range of immune responses. 

The three main delivery systems under 

development are (i) non-disseminating 
genetically modified organisms (GM Os) in 

baits, (ii) synthetic delivery systems and (iii) 
disseminating GMOs such as viruses or 
bacteria. For many rodent pests, particularly 

those that are native species, bait delivery 
may be the method of choice for political, 
social, economic and ecological reasons. 

Non-dlsseminating agents 

Non-replicating GMOs, such as 
attenuated Salmonella, are currently being 
developed and tested (Bradley 1994; Bradley 
et al. 1997). Selected mutant strains of 

Salmonella have the advantage that they are 

avirulent without decreasing their 
immunogenicity and they are not infective. 

Furthermore, the introduction of a 'suicide' 

plasmid into this system would have the 
added advantage of degrading the foreign 

deoxyribonucleic acid (DNA) and would 
make it more acceptable because the bait­

delivered product would contain no foreign 
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genetic material (Knudsen et al. 1995; Tedin 
et al. 1995). 

Various gram bacteria 
(Escherichia coli, SalltlOnella typhimurium, 
Vibrio cholerae, Klebsiella pneumoniae and 
Actinobacillus) can be engineered to carry a 
gene (PhiX174 geneE) which, when induced, 

causes lysis and release of the cytoplasmic 
contents of the bacteria. This process 
produces a non-living vaccine delivery 
system. These bacteria can also be 
engineered to carry other genes (e.g. 
encoding reproductive proteins). After lysis, 
the' ghost' bacteria contain only membrane­

associated recombinant antigen. Bacterial 
ghosts are cheap to produce, can be stored 
for long periods and can contain multiple 
antigenic determinants that are present in a 
highly immunostimulatory environment 
(Szostak et al. 1996). Such features make 
bacterial ghosts an attractive delivery system 
for immunocontraceptive antigens. 
However, it remains to be seen whether 
these preparations produce immunity to 
reproductive antigens after oral delivery. 

Synthetic delivery systems 

Synthetic delivery systems for antigens 
include ISCOMs (immunostimulatory 
complexes-e.g. Quil A, cholesterol, 

phospholipid constructs), microspheres 
(polylactide-coglycolide polyphosphazenes), 
and liposome emulsions (Davis 1996). 

The current high costs of production 
mean these systems are only suitable for 
human and companion animal vaccination 
and not for broad-scale application to a 
wildlife population. Nevertheless, the per 
unit production cost will decrease as these 

systems become more popular and 
production teclmology improves. 



Disseminating GMOs 

These currently have the greatest 

theoretical potential for use as vectors for 
immunocontraceptive agents. A viral vector 

could potentially overcome problems 
associated with the distribution of an 

immunocontraceptive to control wild 

populations (Bomford 1990). The 
advantages of a viral-vectored 

immunocontraceptive agent over a bait­

delivered immunocontraceptive agent are 
summarised in Table 3. Clearly the selection 

of a viral vector requires careful 
consideration of its properties. The current 

vector of choice for delivery of a mouse 

immunocontraceptive is mouse 
cytomegalovirus and it possesses most of the 

essential and desirable characteristics 

required (Table 4), although additional 
research is required to confirm some of its 
features. 

Table 3. 

Biological Control of Rodents 

VIRAL-VECTORED 

IMMUNOCONTRACEPTION (VVIC) -

LABORATORY PROGRESS 

Ectromelia 

Ectromelia virus (ECTV: family Poxviridae, 

genus Orthopoxvirus) causes the disease 

known as mousepox and is a pathogen of 
laboratory mice (Fenner and Buller 1997). It 

is closely related to vaccinia virus and was 

investigated as a useful model system for the 
development of viral-vectored immuno­

contraception (VVIC). A recombinant 
ectromelia virus, with a thymidine kinase 

negative phenotype, expressing ZPC was 

constructed and then used to infect female 

inbred laboratory mice of the BALB/ c strain, 

which are highly susceptible to mousepox 

Qackson et al. 1998). Fertility was assessed 
by pairing females with males from three 

weeks post-infection and monitoring for 

Viral·vectored versus bait·delivered immunocontraceptives (after Bomford 1990; Shell am 1994; 
Chambers et al. 1997) 

Advantages of a vlral-dellvered Immunocontraceptlve 

A replicating virus may induce a stronger immune response and greater immunological memory. 

An infective agent can potentially spread a reproductive protein rapidly through a population. 

A self-perpetuating, infectious agent is ultimately cheaper than baits which must be manually applied. 

A viral vector is a species-specific carrier. 

Overcomes problems associated with bait aversion or bait shyness. 

Overcomes the precise timing necessary for bait delivery relative to the target animal's breeding cycle. 

Reduces wastage associated with inadvertent multiple baiting of some individuals. 

Advantages of a balt-dellvered Immunocontraceptlve 

More acceptable to the public than the use of a disseminating genetically modifiad organism. 

Easier regulation of control activities-can be readily withheld or withdrawn from use. 
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Table 4. 
Essential and desirable properties for a virus which will act as a vector of an immunocontraceptive agent for 

the biological control of rodents (after Shellam 1994). Does murine cytomegalovirus (MCMV) meet these 

requirements? 

Essential properties 

• Species-specific and naturally infects target 
species 

• Readily transmitted in target species 

• Insertion of foreign gene is stable and does 
not affect viral growth or transmission 

• Stimulates long lived immune response and ? 
immunological memory 

MCMV 

Native murids will be tested to verify this 

Seroprevalence >90% in wild mice (Smith et al 
1993) 

Insertion sites identified (Manning and Mocarski 
1988); recombinant constructed with beta­
galactosidase gene. More research required on 
effects on transmission 

• Recombinant virus can be introduced and 
maintained in the presence of existing 
immunity 

? Wild mice have been found with up to four 
strains; infection with multiple strains can be 
achieved in the laboratory (Booth et al 1993). 
Epidemiology of this needs to be examined in 
wild mice 

• Panel of isolates available 

• Epidemiology of infection understood and 
site of viral growth known 

• Approval by regulatory authorities likely 

Desirable properties 

• Virus is already in the country 

..; 

..; 

• Virus establishes persistent and non-lethal V 
latent infection 

• Good local immunoglobulinA response which ..; 
does not interfere with transmission 

• Mechanism for any genetically determined 
host resistance is known 

• Genetically determined host resistance does ..; 
not interfere with infection or transmission 

• Mechanism of transmission known 

• Virus is sexually transmitted 

..; 

..; 
• Knowledge of the epidemiology of infection ? 

and transmission of natural virus variants 

• A DNA rather than an RNA virus (greater ..; 
genetic stability) 
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Virus perSists in submaxillary gland Weak 
knowledge of epidemiology outside laboratory 

Already in Australia 

MCMV 

(see Smith et al. 1993) 

Ability of subsequent infections to stimulate 
immune response not known 

Close contact; sexual and via saliva 

Enhances species-specificity 



evidence of pregnancy and birth of litters. 

Two major experiments were conducted, 

one to assess the immediate effects on 
fertility and the second to test the duration of 

the effects. 

The immediate effects on fertility were a 

reduction in the number of litters produced 

by females infected with ECTV-ZPC 

compared to uninfected controls or females 
infected with recombinant ectromelia virus 

(ECTV-602) expressing a non-reproductive 

marker protein, LacZ (Table 5). The effects on 

fertility were long term, with mice infected 

with ECTV-ZPC infertile for periods of 5-9 
months while those infected with ECTV-602 

remained fertile. Mice became fertile as the 

anti-ZPC antibodies in the serum decreased, 

but when they were re-infected with the 

recombinant virus, antibody titres to ZPC 

increased and the animals returned to an 

infertile state (Jackson et a1. 1998). Therefore, 

this study provided the first demonstration 

of VVIC in laboratory mice. 

Examination of the ovaries of i.nfertile 
females revealed two possible mechanisms 

for infertility. Half of the animals showed 

disruption in folliculogenesis, with an 

absence of mature follicles and oocytes as 

Table 5. 
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well as large clusters of luteinised cells 
(Jackson et a1. 1998). There was no 

observable oophoritis. The remaining 
animals showed normal ovarian 

development of follicles and ovulation; 

antibody localisation studies indicated 

binding of ZPC antibodies to these oocytes, 

suggesting that after ovulation, sperm 

would not be able to bind and result in 
fertilisation (Jacks on et a1. 1998). 

Murine cytomegalovirus 

Ectromelia virus is not present naturally in 

the Australian environment and therefore, 
for ethical, political and social reasons, is not 

an ideal candidate for release as a viral 
vector of an immunocontraceptive agent. 

Moreover, its lethality would select for 

resistance more rapidly than a non-lethal 
agent. Other research is being conducted 

using murine cytomegalovirus (MCMV) 

which is highly prevalent in Australian 

mouse populations and possesses the 

desirable properties of a vector (Table 4) 
(Singleton et a1. 1993; Smith et a1. 1993; 

Shell am 1994). This large DNA virus (230 kb, 

~200 genes) is a member of the Betaherpes­

virinae sub-family of the Herpesviridae. It 

Infertility in BALB/c mice infected with either recomblnant ectromelia virus expressing zona pellucida 

glycoprotein C (ECTV-ZPC) or recombinant ECTV expressing a non·reproductive marker protein (ECTV-602) 

compared with uninfected controls (after Jackson et al. 1998), SE = standard error. 

Ectromelia virus 
Infection 

None 

ECTV-ZPC 

No. of mice with 
litters/total mice 

10/10 

4/13 

No. of Implantations 
(mean :t SE) 

All animals 

9.5 ± 0.8 9.5 ± 0.8 

8.5± 0.9 6.8± 1.1 

2.5 ± 0.7 0.8 ± 0.4 

Utter size 
(mean:t SE) 

Animals with All animals 
litters 

6.6 ± 0.8 6.6 ± 0.8 

7.3 ± 0.7 5.8± 1.0 

1.8 ± 0.3 0.5 ± 0.2 
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shows strict species-specificity (Hudson 
1994) and establishes a persistent infection in 
the salivary gland with latent infection 
apparently associated with ubiquitous 
elements such as macrophages (Koffron et 
a1. 1995; Pollock et a1. 1997), rather than with 

organ-specific cells (e.g. hepatocytes). 
Infection requires close contact and the virus 
is believed to be transmitted via secretions 
such as saliva and sexual secretions (see 
Shellam 1994). 

Recombinant MCMV has been 

constructed by inserting the mouse ZPC 
gene into the immediate early 2 (ie2) gene. 

The effects on fertility of infecting with 
recombinant MCMV expressing either ZPC 
or a non-reproductive marker gene (LacZ) 

were assessed for several different inbred 

strains of mice (BALB / c, A/I, C57BL/6, 
ARC/s) with varying susceptibility to 
infection with MCMV (Grundy et a1. 1981; 
Allan and Shellam 1984). Recombinant 

MCMV-ZPC induced a long-lasting, high­
titred antibody response to ZPC in all mice 

tested. The fertility of uninfected controls 
was also determined. BALB / c females 
(n 9) infected with recombinant MCMV­

ZPC produced no litters for 200 days after 
infection, while the uninfected controls and 

the MCMV-LacZ infected group produced 
approximately 250-350 pups during the 
same period (Figure 2). The response was 

similar in A/J females although the overall 
prod uctivity of this strain was lower. 

Contraceptive effects of lesser magnitude 
were observed in C57BL/6 and ARC/s 
strains. The ovaries of recombinant MCMV­

ZPC infected females showed histological 
changes but the mechanism of infertility 
remains under investigation. 
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These results (M. Lawson et al., 

unpublished data) demonstrate that 
recombinant MCMV expressing the ZPC 
gene can elicit an immunocontraceptive 

response in mice. This response occurred in 
the absence of high levels of replication of the 
recombinant virus, since very low levels of 

virus were found in the salivary glands of 
mice relative to controls. Research is 

continuing on ways to enhance this response 
in less susceptible strains of mice as well as to 
demonstrate the transmissibility and 

competitiveness of the recombinant virus 
when confronted with prior MCMV infection 
in wild outbred mice (see next section). 

EPIDEMIOLOGICAL CONSIDERATIONS 

Manipulating the genetic structure of a virus 
to incorporate an immunocontraceptive 
antigen may effect its transmissibility, 
persistence and species-specificity. Thus, it is 
important to examine the epidemiological 
consequences of such a manipulation from 
both an ecological and a viral engineering 

perspective. The key questions that need to 
be addressed are: 

.... What is the transmission rate of the wild­
type virus and the recombinant sterilising 
virus? Do they differ? If so, why? 

.... Do the characteristics of viral infection 
such as the immune response and site of 
replication differ between the wild-type 
and recombinant virus? 

.... What is the threshold population size 
required to maintain the viral infection at a 
specified prevalence? What influences 

this? 



~ Can a recombinant strain of the virus 

establish and generate an irnmw1e 

response in a rodent population that may 
have a pre-existing infection with the wild­

type virus? Is the order of infection 

important? 

~ What is the persistence of the virus in the 

environment? 

Many of these questions are difficult to 

test in wild populations, particularly for the 
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recombinant viruses where thorough testing 
w1der contained conditions is required 

before release into a field population. A 
crucial experiment will be to examine if the 

impact of the sterilising, recombinant virus 

on breeding affects the transmissibility of the 

virus. 

Experiments will be conducted to 
address these questions using large 

(2 m x 2 m) cages to house a simulated 

'population' of mice. These cages are 
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Figure 2. 

Cumulative births in different strains of mice infected with either recombinant murine cytomegalovirus­

zona pelucida glycoprotein C (MCMV-ZPC) ( 'f' ), or recombinant MCMV-LacZ (a non-reproductive marker 

protein gene ( ) compared with uninfected controls ( e ). Groups of nine females were infected with 2 x 104 

pfu (plaque forming units) of tissue culture-derived virus 21 days prior to the introduction of males to the 

breeding cages. Each cage contained three females and one male. Groups were checked for births several 

times per week. 
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internally complex so that mice can avoid 
each other within the cage if required. 
Uninfected mice will be released into this 
cage, a number of mice infected by 
intraperitoneal inoculation and the spread of 
the virus monitored. Further studies of 
MCMV in wild populations will still be 
necessary to assess the relevance of these 
cage results. The use of a virus strain 
expressing an innocuous, non-reproductive 
marker gene would be useful in this instance 
but awaits regulatory approvaL 

A complementary approach is the use of 
epidemiological models to predict the likely 
behaviour of a sterilising virus in a field 
population. The choice of viral vector for an 
immunocontraceptive has several 
epidemiological consequences. In 
polyoestrous species-where the sterilising 
virus is assumed to be sexually transmitted, 

persists in the infected host and does not 
disrupt gonadal function-the recombinant 
virus will have a selective advantage over 
the native strain. This is because the more 
frequent return to oestrus in sterilised 

females may provide more opportunities for 
transmission (Barlow 1994; Tyndale-Biscoe 
1995; Barlow et a1. 1997). If gonadal function 
is disrupted, the animals may not show 
normal mating behaviour and this may 
reduce transmission of the virus. The 
promiscuity of males and their persistent 
infection with MCMV will then be critical for 
transmission to susceptible females. 

A virus that is sexually transmitted 
increases the chances of the VVIC agent 

contacting only the target pest population 
compared with a contagious or insect-borne 
virus. However, spatial modelling suggests 
that a sexually transmitted virus would be at 
a disadvantage when compared with a virus 
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spread by insect vectors, as the requirement 
for close contact could potentially limit the 
rate of spread of the virus (G.M. Hood, 
unpublished data). These considerations 
need to be balanced when determining 

which viral vector is most appropriate in 
each pest control situation. 

ECOLOGICAL IMPLICATIONS 

Immunocontraception can only be judged to 
be successful for rodent control if it reduces 
population size and damage as a 
consequence of reducing reproduction 
(Bomford 1990; Braysher 1993). For each 
species, there is a population threshold 
below which the damage inflicted is 
tolerable. The objective is not to eradicate the 
pest species, an impossible task in most 
instances, but to reduce the pest species to 
below this 'tolerable level'. 

Populations have inherent regulatory 
mechanisms preventing over-population 
which counteract an innate ability to 
produce surplus offspring (Howard 1967; 

Sinclair 1989). If a population to be 
controlled is already at high density, 
density-dependent mortality and dispersal 
are probably already high amongst juveniles 
and therefore, sterilisation will simply 
prevent birth of young that would otherwise 
die or disperse without breeding. Sterility 
rates must be sufficiently high to lower 
recruitment to the adult population if 
sterilisation is to reduce population size 
(Bomford 1990). This emphasises the 
importance of gaining some understanding 
of the factors regulating populations and 
how these are affected by fertility control. 

Fertility control may interact with other 
popUlation processes to enhance the overall 



effect on population numbers. For example, 
if a pest species is prevented from increasing 
its reproductive rate, predation may be able 
to maintain their population at a low level 
(Sinclair 1997). This may apply to house 
mouse populations in Australia in which 
avian predators are capable of regulating the 
population when mouse densities remain 
low but can not maintain this regulation 
when mouse densities increase to high levels 
(Sinclair et al. 1990). 

Several ecological questions need to be 
addressed when assessing the potential of a 
particular immunocontraceptive agent: 

... What proportion of a wild pest population 
needs to be sterilised to significantly 
reduce growth rate and population size? 
And can a delivery system be developed 
that will reach the required proportion of 
the population? 

... Is the maintenance of social structure 
important and does it affect the efficiency 
of the immunocontraceptive? 

... Is compensation a likely factor that could 
reduce the efficacy of an 
immunocontraceptive? 

A further question is whether density­
dependence plays a role in modifying the 
efficacy of a given sterility level. Will the 
proportion of sterilised individuals need to 
be increased in a high-density compared 
with a low-density population to have the 
same impact? Is compensation density­
dependent? Some of the implications for 
density-dependent regulation on the 
applicability of sterilisation to control 
populations have been discussed in a 
previous section. 
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Level of sterility required 

Modelling 

Mathematical models have been used to 
estimate the level of fertility control required 
to produce a significant reduction in 
population size. Knipling and McGuire 
(1972) modelled the effects of permanent 
sterilisation of females or both sexes versus 
killing similar numbers in a rat population. 
Their model predicted that by sterilising 
90% of both sexes, this had a greater effect 
than killing 90% of rats. However, they 
assumed that if 90% of males don't breed, 
90% of females would not breed. In a species 
such as rodents with a promiscuous mating 
system, this is an invalid assumption 
(Kennelly et al. 1972; Pennycuik et al. 1978). 
There was also no allowance for 
compensatory changes in immigration and 
dispersal. 

N. Stenseth et al. (unpublished data) have 
modelled empirical field data from 
populations of the multi-mammate rat 
Mastomys natalensis, in eastern Africa. The 
model simulated a permanent decrease in 
reproductive rate of this species and found 
that long-term reductions in population 
density were attained if between 50 and 75% 
of females were sterile. 

A simple demographic model using Iife­
history information obtained from 
laboratory, enclosure and field studies was 
used to examine the proportion of mice to be 
sterilised to produce a significant decrease in 
population size in enclosure populations 
(Chambers et al. 1997). This simulation was a 
useful precursor to a manipulative 
experiment (described below) f assisting with 
experimental design and indicating the 
types of data that needed to be obtained. The 
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model examined two levels of sterilisation 
(67% and 75% of females) and compared the 
outcome against a non-sterilised population. 
The simulation found that both the 67% and 
75% levels of sterility were sufficient to 
reduce population size and growth rate, 
relative to the unsterilised population 
(Figure 3). 

However, models often overestimate the 
effectiveness of an immunocontraceptive as 
they are generally based on higher levels of 
fertility control than can be practically 
achieved in the field. They also tend to 
ignore or underestimate factors that may 
reduce the effects of fertility controt such as 
compensatory changes in behaviour, 
survival or fecundity (Bomford 1990). The 
latter applies to all of the models described 
above. 

Manipulative experiments 

Manipulative experiments can be used to 
examine empirically the sterility level 
suggested from mathematical models. 
Experiments involving surgical sterilisation 
allow the degree and nature of sterilisation 
required to reduce population size to be 
examined (Kennelly and Converse 1997). For 
example, when females in populations of 
house mice housed in outdoor enclosures 
(Figure 4) were surgically sterilised at a level 
of 67%, this significantly reduced population 
size. Over 18 weeks, populations were 
reduced from a mean abundance of 221 mice 
in two control populations to 104 mice in 
four sterilised populations (Chambers et aL 
1999). 

Kennelly et al. (1972) sterilised 85% of 
males in a Norway rat population and found 
no effect on population size when compared 
with an unsterilised population, confirming 

232 

that the development of an immuno­
contraceptive for males in a species with a 
promiscuous mating strategy is not effective. 

Social structure 

Many studies of wild mammals have shown 
that reproductive success is closely linked to 
an animal's rank in the social hierarchy. 
Lower ranking animals either do not breed 
or fail to rear their young to independence 
(Wasser and Barash 1983; Abbott 1988). 
Caughley et al. (1992) highlighted the need 
to have some understanding of the social 
structure and mating system of the species to 
be controlled by fertility control. They 
showed via modelling that for most 
scenarios, sterilisation would reduce 
population growth, irrespective of mating 
system or social structnre. However, where 
the sterilisation of a single dominant female 
releases subordinates from breeding 
suppression, sterilisation actually enhanced 
the overall productivity of the population. 
This emphasises the need to sterilise 
individuals without compromising their 
social position (Chambers et aL 1997). This 
would maintain the breeding performance 
of subordinates at a low levet preventing 
compensation by these individuals for the 
reduction in population growth (Caughley 
et al. 1992; Barlow 1994; Tyndale-Biscoe 
1994; Cowan and Tyndale-Biscoe 1997). 

The importance of maintaining hormonal 
competence in surgically sterilised females 
in reducing the overall productivity of 
populations has been examined for mice 
housed in near-natural outdoor enclosures 
(Chambers et al. 1999). Female mice were 
either ovariectomised (hormonally 
incompetent) or tnbally ligated (hormonally 
competent) at the rate of 67% per population 
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Demographic model predicting the trappable population of mice housed in outdoor enclosures after 0%,67% 
and 75% offemales have been sterilised (see Chambers et al. 1997 for details ofthe model) . Each plot is 

the mean (± standard deviation) of 10 runs of the model. F11 to F14 indicates when F1 generation litters 
(those produced by the founding population of mice) will enter the trappable population. F2\ indicates when 

the first litter of the F2 generation (produced by the F1 1 litter) enters the trappable population (adapted 
from Chambers et al . 1997). 

(a) (b) 

Figure 4. 

Outdoor enclosures used for manipulative experiments examining the effectiveness of fertility control to 
reduce mouse population abundance and rate of increase. Each enclosure is 15 m x 15 m in area and is 

protected from predators by wire mesh fencing. Mice are prevented from burrowing into or out of the 

enclosures by metal fences that are buried to a depth of 800 mm. Food and water are provided ad libit um. 

(a) Ground-level view; (b) Aerial view. 
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and compared with unsterilised populations 

(n 2 enclosures per treatment) after 18 

weeks. The mean (± standard error) 
abundance was 126 (± 17) for the tubally 

ligated populations and was 81 (± 12) for the 

ovariectomised populations. When these 

were compared with the control populations 
(mean 221 with standard error 26) using 

analysis of variance, there was no significant 

difference between the two methods of 

sterilisation. Thus for house mice, it appears 

that the maintenance of hormonal 

competence in sterilised females is not 
important for fertility control to be effective 

in reducing population size. 

If the maintenance of social structure is 

important, this has consequences for the type 

of immunocontraceptive antigen to be used 

(Chambers et a1. 1997). Some of these antigens 

are known to cause oophoritis or ovarian 

dysfunction that may affect the release of 

hormones controlling reproduction and 

social position (Skinner et a1. 1984; 

Kirkpatrick et a1. 1992; Rhim et a1. 1992). 

Compensation 

If fertility is reduced, the average population 

size is also reduced, but only under certain 

conditions. If juvenile or adult survival 

improves with lower fertility or territoriality 

limits populations, the effects of lower birth 

rate will not change population size unless 

such reduction exceeds the effects of these 

processes (Sinclair 1997). If sterile 

individuals have increased survival, they 

may cause more damage than non-sterile 

animals (Bomford 1990). 

As was discussed earlier, modelling the 

effects of fertility control on wildlife 

populations often ignores the effects of 

compensation. Therefore it is important to 
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measure this in manipulative experiments to 

allow predictions of the efficacy of 

immunocontraception to be improved. 

PUBLIC ACCEPTANCE OF GMOs 

There are some that take the view that VVIC 

will never be adopted as a control strategy 

for wild pest populations such as the house 

mouse in Australia because GMOs will not 

be accepted by the public. However, it is 

important in this debate to weigh up the 

risks of VVIC (Table 6) against the inherent 

risks in conventional control methods (Table 

1). It is also imperative to separate the 

perceived and real risks of VVIC and balance 

this against the benefits gained in reducing 

the damage caused by the pests (Chambers 

et a1. 1997). The strategy adopted by the 

Vertebrate Pest Animal Control eRC is that 

research should proceed incrementally with 

public discussion at each step so that its 

potential use can be weighed again.',t the 

risks (Tyndale-Biscoe 1997b). 

The risks of WIC are discussed in detail 
in Tyndale-Biscoe (1994, 1995), Guynn (1997) 

and Williams (1997) and are summarised in 

Table 6. Most relate to the issues of public 

acceptability of GMOs and maintaining the 
species-specificity of the recombinant virus. 

How species-specificity is achieved will 

depend on the target animal, the ecosystem, 

the delivery system, local non-target species 

and, in general, the aims of the fertility 

control program (Stohr and Meslin 1997). 

The important question to address is if a 

WIC encounters a non-target species, will 

this cause infertility even though no 

productive infection occurs? Species­

specificity operates at three levels: the viral 

vector, the reproductive protein and social 




